ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6y^{2}-21y+12=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
y=\frac{-\left(-21\right)±\sqrt{\left(-21\right)^{2}-4\times 6\times 12}}{2\times 6}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
y=\frac{-\left(-21\right)±\sqrt{441-4\times 6\times 12}}{2\times 6}
ವರ್ಗ -21.
y=\frac{-\left(-21\right)±\sqrt{441-24\times 12}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-21\right)±\sqrt{441-288}}{2\times 6}
12 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-21\right)±\sqrt{153}}{2\times 6}
-288 ಗೆ 441 ಸೇರಿಸಿ.
y=\frac{-\left(-21\right)±3\sqrt{17}}{2\times 6}
153 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{21±3\sqrt{17}}{2\times 6}
-21 ನ ವಿಲೋಮವು 21 ಆಗಿದೆ.
y=\frac{21±3\sqrt{17}}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{3\sqrt{17}+21}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{21±3\sqrt{17}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3\sqrt{17} ಗೆ 21 ಸೇರಿಸಿ.
y=\frac{\sqrt{17}+7}{4}
12 ದಿಂದ 21+3\sqrt{17} ಭಾಗಿಸಿ.
y=\frac{21-3\sqrt{17}}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{21±3\sqrt{17}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 21 ದಿಂದ 3\sqrt{17} ಕಳೆಯಿರಿ.
y=\frac{7-\sqrt{17}}{4}
12 ದಿಂದ 21-3\sqrt{17} ಭಾಗಿಸಿ.
6y^{2}-21y+12=6\left(y-\frac{\sqrt{17}+7}{4}\right)\left(y-\frac{7-\sqrt{17}}{4}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{7+\sqrt{17}}{4} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{7-\sqrt{17}}{4} ನ್ನು ಬಳಸಿ.