ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6x-8-x^{2}<0
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{2} ಕಳೆಯಿರಿ.
-6x+8+x^{2}>0
ಅತ್ಯಧಿ ಘಾತದ ಗುಣಾಕಂವನ್ನು 6x-8-x^{2} ಧನಾತ್ಮಕವಾಗಿ ಮಾಡಲು ಅಸಮಾನವಾಗಿರುವುದನ್ನು -1 ರಿಂದ ಗುಣಿಸಿ. -1 ಎಂಬುದು ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಅಸಮಾನತೆಯ ದಿಕ್ಕು ಬದಲಾಗಿದೆ.
-6x+8+x^{2}=0
ಅಸಮಾನತೆಯನ್ನು ಪರಿಹರಿಸಲು, ಎಡ ಬದಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 1\times 8}}{2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ 1 ಅನ್ನು,b ಗೆ -6 ಅನ್ನು ಮತ್ತು c ಗೆ 8 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
x=\frac{6±2}{2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
x=4 x=2
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{6±2}{2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
\left(x-4\right)\left(x-2\right)>0
ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಸಮಾನವಾಗಿರುವುದನ್ನು ಮರುಬರೆಯಿರಿ.
x-4<0 x-2<0
ಧನಾತ್ಮಕ, ಎಂದು ಉತ್ಪನ್ನಕ್ಕಾಗಿ x-4 ಮತ್ತು x-2 ಋಣಾತ್ಮಕ ಅಥವಾ ಎರಡೂ ಧನಾತ್ಮಕ ಹೊಂದಿಲ್ಲ. x-4 ಮತ್ತು x-2 ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x<2
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x<2 ಆಗಿದೆ.
x-2>0 x-4>0
x-4 ಮತ್ತು x-2 ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿರುವ ಸಂದರ್ಭವನ್ನು ಪರಿಗಣಿಸಿ.
x>4
ಎರಡೂ ಅಸಮಾನತೆಗಳನ್ನು ಪೂರೈಸುತ್ತಿರುವ ಪರಿಹಾರವು x>4 ಆಗಿದೆ.
x<2\text{; }x>4
ಅಂತಿಮ ಪರಿಹಾರವು ಪಡೆದುಕೊಂಡ ಪರಿಹಾರಗಳ ಒಂದುಗೂಡುವಿಕೆಯಾಗಿದೆ.