ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6x^{2}-x=2.8
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
6x^{2}-x-2.8=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 2.8 ಕಳೆಯಿರಿ.
x=\frac{-\left(-1\right)±\sqrt{1-4\times 6\left(-2.8\right)}}{2\times 6}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 6, b ಗೆ -1 ಮತ್ತು c ಗೆ -2.8 ಬದಲಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1-24\left(-2.8\right)}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{1+67.2}}{2\times 6}
-2.8 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-1\right)±\sqrt{68.2}}{2\times 6}
67.2 ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{-\left(-1\right)±\frac{\sqrt{1705}}{5}}{2\times 6}
68.2 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{1±\frac{\sqrt{1705}}{5}}{2\times 6}
-1 ನ ವಿಲೋಮವು 1 ಆಗಿದೆ.
x=\frac{1±\frac{\sqrt{1705}}{5}}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\frac{\sqrt{1705}}{5}+1}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±\frac{\sqrt{1705}}{5}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \frac{\sqrt{1705}}{5} ಗೆ 1 ಸೇರಿಸಿ.
x=\frac{\sqrt{1705}}{60}+\frac{1}{12}
12 ದಿಂದ 1+\frac{\sqrt{1705}}{5} ಭಾಗಿಸಿ.
x=\frac{-\frac{\sqrt{1705}}{5}+1}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{1±\frac{\sqrt{1705}}{5}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 1 ದಿಂದ \frac{\sqrt{1705}}{5} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}
12 ದಿಂದ 1-\frac{\sqrt{1705}}{5} ಭಾಗಿಸಿ.
x=\frac{\sqrt{1705}}{60}+\frac{1}{12} x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6x^{2}-x=2.8
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
\frac{6x^{2}-x}{6}=\frac{2.8}{6}
6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{1}{6}x=\frac{2.8}{6}
6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{1}{6}x=\frac{7}{15}
6 ದಿಂದ 2.8 ಭಾಗಿಸಿ.
x^{2}-\frac{1}{6}x+\left(-\frac{1}{12}\right)^{2}=\frac{7}{15}+\left(-\frac{1}{12}\right)^{2}
-\frac{1}{12} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{1}{6} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{12} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{7}{15}+\frac{1}{144}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{12} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{1}{6}x+\frac{1}{144}=\frac{341}{720}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{144} ಗೆ \frac{7}{15} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{1}{12}\right)^{2}=\frac{341}{720}
ಅಪವರ್ತನ x^{2}-\frac{1}{6}x+\frac{1}{144}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{12}\right)^{2}}=\sqrt{\frac{341}{720}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{12}=\frac{\sqrt{1705}}{60} x-\frac{1}{12}=-\frac{\sqrt{1705}}{60}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{1705}}{60}+\frac{1}{12} x=-\frac{\sqrt{1705}}{60}+\frac{1}{12}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{12} ಸೇರಿಸಿ.