ಅಪವರ್ತನ
6\left(u-\left(-\sqrt{10}-2\right)\right)\left(u-\left(\sqrt{10}-2\right)\right)
ಮೌಲ್ಯಮಾಪನ
6\left(u^{2}+4u-6\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
6u^{2}+24u-36=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
u=\frac{-24±\sqrt{24^{2}-4\times 6\left(-36\right)}}{2\times 6}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
u=\frac{-24±\sqrt{576-4\times 6\left(-36\right)}}{2\times 6}
ವರ್ಗ 24.
u=\frac{-24±\sqrt{576-24\left(-36\right)}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{-24±\sqrt{576+864}}{2\times 6}
-36 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{-24±\sqrt{1440}}{2\times 6}
864 ಗೆ 576 ಸೇರಿಸಿ.
u=\frac{-24±12\sqrt{10}}{2\times 6}
1440 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
u=\frac{-24±12\sqrt{10}}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
u=\frac{12\sqrt{10}-24}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ u=\frac{-24±12\sqrt{10}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12\sqrt{10} ಗೆ -24 ಸೇರಿಸಿ.
u=\sqrt{10}-2
12 ದಿಂದ -24+12\sqrt{10} ಭಾಗಿಸಿ.
u=\frac{-12\sqrt{10}-24}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ u=\frac{-24±12\sqrt{10}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -24 ದಿಂದ 12\sqrt{10} ಕಳೆಯಿರಿ.
u=-\sqrt{10}-2
12 ದಿಂದ -24-12\sqrt{10} ಭಾಗಿಸಿ.
6u^{2}+24u-36=6\left(u-\left(\sqrt{10}-2\right)\right)\left(u-\left(-\sqrt{10}-2\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ -2+\sqrt{10} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -2-\sqrt{10} ನ್ನು ಬಳಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}