ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6a^{2}-13a-10=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
a=\frac{-\left(-13\right)±\sqrt{\left(-13\right)^{2}-4\times 6\left(-10\right)}}{2\times 6}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
a=\frac{-\left(-13\right)±\sqrt{169-4\times 6\left(-10\right)}}{2\times 6}
ವರ್ಗ -13.
a=\frac{-\left(-13\right)±\sqrt{169-24\left(-10\right)}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-\left(-13\right)±\sqrt{169+240}}{2\times 6}
-10 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-\left(-13\right)±\sqrt{409}}{2\times 6}
240 ಗೆ 169 ಸೇರಿಸಿ.
a=\frac{13±\sqrt{409}}{2\times 6}
-13 ನ ವಿಲೋಮವು 13 ಆಗಿದೆ.
a=\frac{13±\sqrt{409}}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{\sqrt{409}+13}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{13±\sqrt{409}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{409} ಗೆ 13 ಸೇರಿಸಿ.
a=\frac{13-\sqrt{409}}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{13±\sqrt{409}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 13 ದಿಂದ \sqrt{409} ಕಳೆಯಿರಿ.
6a^{2}-13a-10=6\left(a-\frac{\sqrt{409}+13}{12}\right)\left(a-\frac{13-\sqrt{409}}{12}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{13+\sqrt{409}}{12} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{13-\sqrt{409}}{12} ನ್ನು ಬಳಸಿ.