x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\sqrt{190}-1\approx 12.784048752
x=-\left(\sqrt{190}+1\right)\approx -14.784048752
x ಪರಿಹರಿಸಿ
x=\sqrt{190}-1\approx 12.784048752
x=-\sqrt{190}-1\approx -14.784048752
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
6x^{2}+12x-1134=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 6, b ಗೆ 12 ಮತ್ತು c ಗೆ -1134 ಬದಲಿಸಿ.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
ವರ್ಗ 12.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
-1134 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{27360}}{2\times 6}
27216 ಗೆ 144 ಸೇರಿಸಿ.
x=\frac{-12±12\sqrt{190}}{2\times 6}
27360 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-12±12\sqrt{190}}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{12\sqrt{190}-12}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±12\sqrt{190}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12\sqrt{190} ಗೆ -12 ಸೇರಿಸಿ.
x=\sqrt{190}-1
12 ದಿಂದ -12+12\sqrt{190} ಭಾಗಿಸಿ.
x=\frac{-12\sqrt{190}-12}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±12\sqrt{190}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -12 ದಿಂದ 12\sqrt{190} ಕಳೆಯಿರಿ.
x=-\sqrt{190}-1
12 ದಿಂದ -12-12\sqrt{190} ಭಾಗಿಸಿ.
x=\sqrt{190}-1 x=-\sqrt{190}-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6x^{2}+12x-1134=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1134 ಸೇರಿಸಿ.
6x^{2}+12x=-\left(-1134\right)
-1134 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
6x^{2}+12x=1134
0 ದಿಂದ -1134 ಕಳೆಯಿರಿ.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+2x=\frac{1134}{6}
6 ದಿಂದ 12 ಭಾಗಿಸಿ.
x^{2}+2x=189
6 ದಿಂದ 1134 ಭಾಗಿಸಿ.
x^{2}+2x+1^{2}=189+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+2x+1=189+1
ವರ್ಗ 1.
x^{2}+2x+1=190
1 ಗೆ 189 ಸೇರಿಸಿ.
\left(x+1\right)^{2}=190
ಅಪವರ್ತನ x^{2}+2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+1=\sqrt{190} x+1=-\sqrt{190}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{190}-1 x=-\sqrt{190}-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
6x^{2}+12x-1134=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-12±\sqrt{12^{2}-4\times 6\left(-1134\right)}}{2\times 6}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 6, b ಗೆ 12 ಮತ್ತು c ಗೆ -1134 ಬದಲಿಸಿ.
x=\frac{-12±\sqrt{144-4\times 6\left(-1134\right)}}{2\times 6}
ವರ್ಗ 12.
x=\frac{-12±\sqrt{144-24\left(-1134\right)}}{2\times 6}
6 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{144+27216}}{2\times 6}
-1134 ಅನ್ನು -24 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-12±\sqrt{27360}}{2\times 6}
27216 ಗೆ 144 ಸೇರಿಸಿ.
x=\frac{-12±12\sqrt{190}}{2\times 6}
27360 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-12±12\sqrt{190}}{12}
6 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{12\sqrt{190}-12}{12}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±12\sqrt{190}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12\sqrt{190} ಗೆ -12 ಸೇರಿಸಿ.
x=\sqrt{190}-1
12 ದಿಂದ -12+12\sqrt{190} ಭಾಗಿಸಿ.
x=\frac{-12\sqrt{190}-12}{12}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-12±12\sqrt{190}}{12} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -12 ದಿಂದ 12\sqrt{190} ಕಳೆಯಿರಿ.
x=-\sqrt{190}-1
12 ದಿಂದ -12-12\sqrt{190} ಭಾಗಿಸಿ.
x=\sqrt{190}-1 x=-\sqrt{190}-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6x^{2}+12x-1134=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
6x^{2}+12x-1134-\left(-1134\right)=-\left(-1134\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1134 ಸೇರಿಸಿ.
6x^{2}+12x=-\left(-1134\right)
-1134 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
6x^{2}+12x=1134
0 ದಿಂದ -1134 ಕಳೆಯಿರಿ.
\frac{6x^{2}+12x}{6}=\frac{1134}{6}
6 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{12}{6}x=\frac{1134}{6}
6 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 6 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+2x=\frac{1134}{6}
6 ದಿಂದ 12 ಭಾಗಿಸಿ.
x^{2}+2x=189
6 ದಿಂದ 1134 ಭಾಗಿಸಿ.
x^{2}+2x+1^{2}=189+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+2x+1=189+1
ವರ್ಗ 1.
x^{2}+2x+1=190
1 ಗೆ 189 ಸೇರಿಸಿ.
\left(x+1\right)^{2}=190
ಅಪವರ್ತನ x^{2}+2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+1\right)^{2}}=\sqrt{190}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+1=\sqrt{190} x+1=-\sqrt{190}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\sqrt{190}-1 x=-\sqrt{190}-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}