c ಪರಿಹರಿಸಿ
c=10
c=-10
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
36+8^{2}=c^{2}
2 ನ ಘಾತಕ್ಕೆ 6 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 36 ಪಡೆಯಿರಿ.
36+64=c^{2}
2 ನ ಘಾತಕ್ಕೆ 8 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 64 ಪಡೆಯಿರಿ.
100=c^{2}
100 ಪಡೆದುಕೊಳ್ಳಲು 36 ಮತ್ತು 64 ಸೇರಿಸಿ.
c^{2}=100
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
c^{2}-100=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 100 ಕಳೆಯಿರಿ.
\left(c-10\right)\left(c+10\right)=0
c^{2}-100 ಪರಿಗಣಿಸಿ. c^{2}-10^{2} ನ ಹಾಗೆ c^{2}-100 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಚೌಕಗಳ ವ್ಯತ್ಯಾಸವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: a^{2}-b^{2}=\left(a-b\right)\left(a+b\right).
c=10 c=-10
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, c-10=0 ಮತ್ತು c+10=0 ಪರಿಹರಿಸಿ.
36+8^{2}=c^{2}
2 ನ ಘಾತಕ್ಕೆ 6 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 36 ಪಡೆಯಿರಿ.
36+64=c^{2}
2 ನ ಘಾತಕ್ಕೆ 8 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 64 ಪಡೆಯಿರಿ.
100=c^{2}
100 ಪಡೆದುಕೊಳ್ಳಲು 36 ಮತ್ತು 64 ಸೇರಿಸಿ.
c^{2}=100
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
c=10 c=-10
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
36+8^{2}=c^{2}
2 ನ ಘಾತಕ್ಕೆ 6 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 36 ಪಡೆಯಿರಿ.
36+64=c^{2}
2 ನ ಘಾತಕ್ಕೆ 8 ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ ಮತ್ತು 64 ಪಡೆಯಿರಿ.
100=c^{2}
100 ಪಡೆದುಕೊಳ್ಳಲು 36 ಮತ್ತು 64 ಸೇರಿಸಿ.
c^{2}=100
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
c^{2}-100=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 100 ಕಳೆಯಿರಿ.
c=\frac{0±\sqrt{0^{2}-4\left(-100\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 0 ಮತ್ತು c ಗೆ -100 ಬದಲಿಸಿ.
c=\frac{0±\sqrt{-4\left(-100\right)}}{2}
ವರ್ಗ 0.
c=\frac{0±\sqrt{400}}{2}
-100 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
c=\frac{0±20}{2}
400 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
c=10
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{0±20}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ 20 ಭಾಗಿಸಿ.
c=-10
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ c=\frac{0±20}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ದಿಂದ -20 ಭಾಗಿಸಿ.
c=10 c=-10
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}