ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

18+\left(2x+4\right)x=24
3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
18+2x^{2}+4x=24
x ದಿಂದ 2x+4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
18+2x^{2}+4x-24=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 24 ಕಳೆಯಿರಿ.
-6+2x^{2}+4x=0
-6 ಪಡೆದುಕೊಳ್ಳಲು 18 ದಿಂದ 24 ಕಳೆಯಿರಿ.
2x^{2}+4x-6=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-4±\sqrt{4^{2}-4\times 2\left(-6\right)}}{2\times 2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 2, b ಗೆ 4 ಮತ್ತು c ಗೆ -6 ಬದಲಿಸಿ.
x=\frac{-4±\sqrt{16-4\times 2\left(-6\right)}}{2\times 2}
ವರ್ಗ 4.
x=\frac{-4±\sqrt{16-8\left(-6\right)}}{2\times 2}
2 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-4±\sqrt{16+48}}{2\times 2}
-6 ಅನ್ನು -8 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-4±\sqrt{64}}{2\times 2}
48 ಗೆ 16 ಸೇರಿಸಿ.
x=\frac{-4±8}{2\times 2}
64 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-4±8}{4}
2 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4}{4}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-4±8}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8 ಗೆ -4 ಸೇರಿಸಿ.
x=1
4 ದಿಂದ 4 ಭಾಗಿಸಿ.
x=-\frac{12}{4}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-4±8}{4} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 8 ಕಳೆಯಿರಿ.
x=-3
4 ದಿಂದ -12 ಭಾಗಿಸಿ.
x=1 x=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
18+\left(2x+4\right)x=24
3 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
18+2x^{2}+4x=24
x ದಿಂದ 2x+4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
2x^{2}+4x=24-18
ಎರಡೂ ಕಡೆಗಳಿಂದ 18 ಕಳೆಯಿರಿ.
2x^{2}+4x=6
6 ಪಡೆದುಕೊಳ್ಳಲು 24 ದಿಂದ 18 ಕಳೆಯಿರಿ.
\frac{2x^{2}+4x}{2}=\frac{6}{2}
2 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{4}{2}x=\frac{6}{2}
2 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 2 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+2x=\frac{6}{2}
2 ದಿಂದ 4 ಭಾಗಿಸಿ.
x^{2}+2x=3
2 ದಿಂದ 6 ಭಾಗಿಸಿ.
x^{2}+2x+1^{2}=3+1^{2}
1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+2x+1=3+1
ವರ್ಗ 1.
x^{2}+2x+1=4
1 ಗೆ 3 ಸೇರಿಸಿ.
\left(x+1\right)^{2}=4
ಅಪವರ್ತನ x^{2}+2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+1\right)^{2}}=\sqrt{4}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+1=2 x+1=-2
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=1 x=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.