ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -10,0 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(x+10\right), x+10,x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x+10 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
570x+x^{2}=\left(x+10\right)\times 560
570x ಪಡೆದುಕೊಳ್ಳಲು x\times 560 ಮತ್ತು 10x ಕೂಡಿಸಿ.
570x+x^{2}=560x+5600
560 ದಿಂದ x+10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
570x+x^{2}-560x=5600
ಎರಡೂ ಕಡೆಗಳಿಂದ 560x ಕಳೆಯಿರಿ.
10x+x^{2}=5600
10x ಪಡೆದುಕೊಳ್ಳಲು 570x ಮತ್ತು -560x ಕೂಡಿಸಿ.
10x+x^{2}-5600=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 5600 ಕಳೆಯಿರಿ.
x^{2}+10x-5600=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-10±\sqrt{10^{2}-4\left(-5600\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 10 ಮತ್ತು c ಗೆ -5600 ಬದಲಿಸಿ.
x=\frac{-10±\sqrt{100-4\left(-5600\right)}}{2}
ವರ್ಗ 10.
x=\frac{-10±\sqrt{100+22400}}{2}
-5600 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-10±\sqrt{22500}}{2}
22400 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-10±150}{2}
22500 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{140}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±150}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 150 ಗೆ -10 ಸೇರಿಸಿ.
x=70
2 ದಿಂದ 140 ಭಾಗಿಸಿ.
x=-\frac{160}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-10±150}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -10 ದಿಂದ 150 ಕಳೆಯಿರಿ.
x=-80
2 ದಿಂದ -160 ಭಾಗಿಸಿ.
x=70 x=-80
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
x\times 560+x\left(x+10\right)=\left(x+10\right)\times 560
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ ಯಾವುದೇ -10,0 ಮೌಲ್ಯಗಳಿಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು x\left(x+10\right), x+10,x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
x\times 560+x^{2}+10x=\left(x+10\right)\times 560
x+10 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
570x+x^{2}=\left(x+10\right)\times 560
570x ಪಡೆದುಕೊಳ್ಳಲು x\times 560 ಮತ್ತು 10x ಕೂಡಿಸಿ.
570x+x^{2}=560x+5600
560 ದಿಂದ x+10 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
570x+x^{2}-560x=5600
ಎರಡೂ ಕಡೆಗಳಿಂದ 560x ಕಳೆಯಿರಿ.
10x+x^{2}=5600
10x ಪಡೆದುಕೊಳ್ಳಲು 570x ಮತ್ತು -560x ಕೂಡಿಸಿ.
x^{2}+10x=5600
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
x^{2}+10x+5^{2}=5600+5^{2}
5 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 10 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 5 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+10x+25=5600+25
ವರ್ಗ 5.
x^{2}+10x+25=5625
25 ಗೆ 5600 ಸೇರಿಸಿ.
\left(x+5\right)^{2}=5625
ಅಪವರ್ತನ x^{2}+10x+25. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+5\right)^{2}}=\sqrt{5625}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+5=75 x+5=-75
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=70 x=-80
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 5 ಕಳೆಯಿರಿ.