ಅಪವರ್ತನ
4\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)x^{9}
ಮೌಲ್ಯಮಾಪನ
500x^{15}+108x^{9}
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4\left(125x^{15}+27x^{9}\right)
4 ಅಪವರ್ತನಗೊಳಿಸಿ.
x^{9}\left(125x^{6}+27\right)
125x^{15}+27x^{9} ಪರಿಗಣಿಸಿ. x^{9} ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)
125x^{6}+27 ಪರಿಗಣಿಸಿ. \left(5x^{2}\right)^{3}+3^{3} ನ ಹಾಗೆ 125x^{6}+27 ಅನ್ನು ಮರುಬರೆಯಿರಿ. ಘನಗಳ ಮೊತ್ತವನ್ನು ಈ ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು: a^{3}+b^{3}=\left(a+b\right)\left(a^{2}-ab+b^{2}\right).
4x^{9}\left(5x^{2}+3\right)\left(25x^{4}-15x^{2}+9\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ. ಮುಂದಿನ ಬಹುಪದೋಕ್ತಿಗಳನ್ನು ಅಪವರ್ತನಗೊಳಿಸಲಾಗಿಲ್ಲ ಏಕೆಂದರೆ ಅವುಗಳು ಯಾವುದೇ ತರ್ಕಬದ್ಧ ವರ್ಗಮೂಲಗಳನ್ನು ಹೊಂದಿಲ್ಲ: 5x^{2}+3,25x^{4}-15x^{2}+9.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}