y ಪರಿಹರಿಸಿ
y=\frac{2}{5}=0.4
y=3
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5y^{2}-17y=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 17y ಕಳೆಯಿರಿ.
5y^{2}-17y+6=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ಸೇರಿಸಿ.
a+b=-17 ab=5\times 6=30
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 5y^{2}+ay+by+6 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-30 -2,-15 -3,-10 -5,-6
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 30 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-30=-31 -2-15=-17 -3-10=-13 -5-6=-11
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-15 b=-2
ಪರಿಹಾರವು -17 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(5y^{2}-15y\right)+\left(-2y+6\right)
\left(5y^{2}-15y\right)+\left(-2y+6\right) ನ ಹಾಗೆ 5y^{2}-17y+6 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
5y\left(y-3\right)-2\left(y-3\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 5y ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(y-3\right)\left(5y-2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ y-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
y=3 y=\frac{2}{5}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, y-3=0 ಮತ್ತು 5y-2=0 ಪರಿಹರಿಸಿ.
5y^{2}-17y=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 17y ಕಳೆಯಿರಿ.
5y^{2}-17y+6=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ಸೇರಿಸಿ.
y=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 5\times 6}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ -17 ಮತ್ತು c ಗೆ 6 ಬದಲಿಸಿ.
y=\frac{-\left(-17\right)±\sqrt{289-4\times 5\times 6}}{2\times 5}
ವರ್ಗ -17.
y=\frac{-\left(-17\right)±\sqrt{289-20\times 6}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-17\right)±\sqrt{289-120}}{2\times 5}
6 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{-\left(-17\right)±\sqrt{169}}{2\times 5}
-120 ಗೆ 289 ಸೇರಿಸಿ.
y=\frac{-\left(-17\right)±13}{2\times 5}
169 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{17±13}{2\times 5}
-17 ನ ವಿಲೋಮವು 17 ಆಗಿದೆ.
y=\frac{17±13}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{30}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{17±13}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 13 ಗೆ 17 ಸೇರಿಸಿ.
y=3
10 ದಿಂದ 30 ಭಾಗಿಸಿ.
y=\frac{4}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{17±13}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ದಿಂದ 13 ಕಳೆಯಿರಿ.
y=\frac{2}{5}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{4}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
y=3 y=\frac{2}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5y^{2}-17y=-6
ಎರಡೂ ಕಡೆಗಳಿಂದ 17y ಕಳೆಯಿರಿ.
\frac{5y^{2}-17y}{5}=-\frac{6}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y^{2}-\frac{17}{5}y=-\frac{6}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
y^{2}-\frac{17}{5}y+\left(-\frac{17}{10}\right)^{2}=-\frac{6}{5}+\left(-\frac{17}{10}\right)^{2}
-\frac{17}{10} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{17}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{17}{10} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}-\frac{17}{5}y+\frac{289}{100}=-\frac{6}{5}+\frac{289}{100}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{17}{10} ವರ್ಗಗೊಳಿಸಿ.
y^{2}-\frac{17}{5}y+\frac{289}{100}=\frac{169}{100}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{289}{100} ಗೆ -\frac{6}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(y-\frac{17}{10}\right)^{2}=\frac{169}{100}
ಅಪವರ್ತನ y^{2}-\frac{17}{5}y+\frac{289}{100}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y-\frac{17}{10}\right)^{2}}=\sqrt{\frac{169}{100}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y-\frac{17}{10}=\frac{13}{10} y-\frac{17}{10}=-\frac{13}{10}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=3 y=\frac{2}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{17}{10} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}