x ಪರಿಹರಿಸಿ
x=-1
x=\frac{2}{5}=0.4
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5x^{2}-7x-6+10x=-4
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
5x^{2}+3x-6=-4
3x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 10x ಕೂಡಿಸಿ.
5x^{2}+3x-6+4=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 4 ಸೇರಿಸಿ.
5x^{2}+3x-2=0
-2 ಪಡೆದುಕೊಳ್ಳಲು -6 ಮತ್ತು 4 ಸೇರಿಸಿ.
a+b=3 ab=5\left(-2\right)=-10
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 5x^{2}+ax+bx-2 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,10 -2,5
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -10 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+10=9 -2+5=3
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=5
ಪರಿಹಾರವು 3 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(5x^{2}-2x\right)+\left(5x-2\right)
\left(5x^{2}-2x\right)+\left(5x-2\right) ನ ಹಾಗೆ 5x^{2}+3x-2 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(5x-2\right)+5x-2
5x^{2}-2x ರಲ್ಲಿ x ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(5x-2\right)\left(x+1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 5x-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=\frac{2}{5} x=-1
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 5x-2=0 ಮತ್ತು x+1=0 ಪರಿಹರಿಸಿ.
5x^{2}-7x-6+10x=-4
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
5x^{2}+3x-6=-4
3x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 10x ಕೂಡಿಸಿ.
5x^{2}+3x-6+4=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 4 ಸೇರಿಸಿ.
5x^{2}+3x-2=0
-2 ಪಡೆದುಕೊಳ್ಳಲು -6 ಮತ್ತು 4 ಸೇರಿಸಿ.
x=\frac{-3±\sqrt{3^{2}-4\times 5\left(-2\right)}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ 3 ಮತ್ತು c ಗೆ -2 ಬದಲಿಸಿ.
x=\frac{-3±\sqrt{9-4\times 5\left(-2\right)}}{2\times 5}
ವರ್ಗ 3.
x=\frac{-3±\sqrt{9-20\left(-2\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{9+40}}{2\times 5}
-2 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-3±\sqrt{49}}{2\times 5}
40 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-3±7}{2\times 5}
49 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-3±7}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±7}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 7 ಗೆ -3 ಸೇರಿಸಿ.
x=\frac{2}{5}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{4}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=-\frac{10}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-3±7}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ 7 ಕಳೆಯಿರಿ.
x=-1
10 ದಿಂದ -10 ಭಾಗಿಸಿ.
x=\frac{2}{5} x=-1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5x^{2}-7x-6+10x=-4
ಎರಡೂ ಬದಿಗಳಿಗೆ 10x ಸೇರಿಸಿ.
5x^{2}+3x-6=-4
3x ಪಡೆದುಕೊಳ್ಳಲು -7x ಮತ್ತು 10x ಕೂಡಿಸಿ.
5x^{2}+3x=-4+6
ಎರಡೂ ಬದಿಗಳಿಗೆ 6 ಸೇರಿಸಿ.
5x^{2}+3x=2
2 ಪಡೆದುಕೊಳ್ಳಲು -4 ಮತ್ತು 6 ಸೇರಿಸಿ.
\frac{5x^{2}+3x}{5}=\frac{2}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{3}{5}x=\frac{2}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{5}x+\left(\frac{3}{10}\right)^{2}=\frac{2}{5}+\left(\frac{3}{10}\right)^{2}
\frac{3}{10} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{10} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{2}{5}+\frac{9}{100}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{10} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{5}x+\frac{9}{100}=\frac{49}{100}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{100} ಗೆ \frac{2}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{3}{10}\right)^{2}=\frac{49}{100}
ಅಪವರ್ತನ x^{2}+\frac{3}{5}x+\frac{9}{100}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{10}\right)^{2}}=\sqrt{\frac{49}{100}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{10}=\frac{7}{10} x+\frac{3}{10}=-\frac{7}{10}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2}{5} x=-1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{10} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}