ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5x^{2}-6x=3
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
5x^{2}-6x-3=3-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
5x^{2}-6x-3=0
3 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
x=\frac{-\left(-6\right)±\sqrt{\left(-6\right)^{2}-4\times 5\left(-3\right)}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ -6 ಮತ್ತು c ಗೆ -3 ಬದಲಿಸಿ.
x=\frac{-\left(-6\right)±\sqrt{36-4\times 5\left(-3\right)}}{2\times 5}
ವರ್ಗ -6.
x=\frac{-\left(-6\right)±\sqrt{36-20\left(-3\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-6\right)±\sqrt{36+60}}{2\times 5}
-3 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-6\right)±\sqrt{96}}{2\times 5}
60 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-\left(-6\right)±4\sqrt{6}}{2\times 5}
96 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{6±4\sqrt{6}}{2\times 5}
-6 ನ ವಿಲೋಮವು 6 ಆಗಿದೆ.
x=\frac{6±4\sqrt{6}}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{4\sqrt{6}+6}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{6±4\sqrt{6}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4\sqrt{6} ಗೆ 6 ಸೇರಿಸಿ.
x=\frac{2\sqrt{6}+3}{5}
10 ದಿಂದ 6+4\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{6-4\sqrt{6}}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{6±4\sqrt{6}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ದಿಂದ 4\sqrt{6} ಕಳೆಯಿರಿ.
x=\frac{3-2\sqrt{6}}{5}
10 ದಿಂದ 6-4\sqrt{6} ಭಾಗಿಸಿ.
x=\frac{2\sqrt{6}+3}{5} x=\frac{3-2\sqrt{6}}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5x^{2}-6x=3
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{5x^{2}-6x}{5}=\frac{3}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{6}{5}x=\frac{3}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{6}{5}x+\left(-\frac{3}{5}\right)^{2}=\frac{3}{5}+\left(-\frac{3}{5}\right)^{2}
-\frac{3}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{6}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{3}{5}+\frac{9}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{5} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{6}{5}x+\frac{9}{25}=\frac{24}{25}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{9}{25} ಗೆ \frac{3}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{3}{5}\right)^{2}=\frac{24}{25}
ಅಪವರ್ತನ x^{2}-\frac{6}{5}x+\frac{9}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{5}\right)^{2}}=\sqrt{\frac{24}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{5}=\frac{2\sqrt{6}}{5} x-\frac{3}{5}=-\frac{2\sqrt{6}}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2\sqrt{6}+3}{5} x=\frac{3-2\sqrt{6}}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{5} ಸೇರಿಸಿ.