ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5x^{2}-40x+85=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-40\right)±\sqrt{\left(-40\right)^{2}-4\times 5\times 85}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ -40 ಮತ್ತು c ಗೆ 85 ಬದಲಿಸಿ.
x=\frac{-\left(-40\right)±\sqrt{1600-4\times 5\times 85}}{2\times 5}
ವರ್ಗ -40.
x=\frac{-\left(-40\right)±\sqrt{1600-20\times 85}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-40\right)±\sqrt{1600-1700}}{2\times 5}
85 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-40\right)±\sqrt{-100}}{2\times 5}
-1700 ಗೆ 1600 ಸೇರಿಸಿ.
x=\frac{-\left(-40\right)±10i}{2\times 5}
-100 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{40±10i}{2\times 5}
-40 ನ ವಿಲೋಮವು 40 ಆಗಿದೆ.
x=\frac{40±10i}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{40+10i}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{40±10i}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10i ಗೆ 40 ಸೇರಿಸಿ.
x=4+i
10 ದಿಂದ 40+10i ಭಾಗಿಸಿ.
x=\frac{40-10i}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{40±10i}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 40 ದಿಂದ 10i ಕಳೆಯಿರಿ.
x=4-i
10 ದಿಂದ 40-10i ಭಾಗಿಸಿ.
x=4+i x=4-i
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5x^{2}-40x+85=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
5x^{2}-40x+85-85=-85
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 85 ಕಳೆಯಿರಿ.
5x^{2}-40x=-85
85 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{5x^{2}-40x}{5}=-\frac{85}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{40}{5}\right)x=-\frac{85}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-8x=-\frac{85}{5}
5 ದಿಂದ -40 ಭಾಗಿಸಿ.
x^{2}-8x=-17
5 ದಿಂದ -85 ಭಾಗಿಸಿ.
x^{2}-8x+\left(-4\right)^{2}=-17+\left(-4\right)^{2}
-4 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -8 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -4 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-8x+16=-17+16
ವರ್ಗ -4.
x^{2}-8x+16=-1
16 ಗೆ -17 ಸೇರಿಸಿ.
\left(x-4\right)^{2}=-1
ಅಪವರ್ತನ x^{2}-8x+16. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-4\right)^{2}}=\sqrt{-1}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-4=i x-4=-i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=4+i x=4-i
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 4 ಸೇರಿಸಿ.