ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5x^{2}-10x+\frac{117}{5}=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-10\right)±\sqrt{\left(-10\right)^{2}-4\times 5\times \frac{117}{5}}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ -10 ಮತ್ತು c ಗೆ \frac{117}{5} ಬದಲಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-4\times 5\times \frac{117}{5}}}{2\times 5}
ವರ್ಗ -10.
x=\frac{-\left(-10\right)±\sqrt{100-20\times \frac{117}{5}}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{100-468}}{2\times 5}
\frac{117}{5} ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-10\right)±\sqrt{-368}}{2\times 5}
-468 ಗೆ 100 ಸೇರಿಸಿ.
x=\frac{-\left(-10\right)±4\sqrt{23}i}{2\times 5}
-368 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{10±4\sqrt{23}i}{2\times 5}
-10 ನ ವಿಲೋಮವು 10 ಆಗಿದೆ.
x=\frac{10±4\sqrt{23}i}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{10+4\sqrt{23}i}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±4\sqrt{23}i}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4i\sqrt{23} ಗೆ 10 ಸೇರಿಸಿ.
x=\frac{2\sqrt{23}i}{5}+1
10 ದಿಂದ 10+4i\sqrt{23} ಭಾಗಿಸಿ.
x=\frac{-4\sqrt{23}i+10}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{10±4\sqrt{23}i}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ದಿಂದ 4i\sqrt{23} ಕಳೆಯಿರಿ.
x=-\frac{2\sqrt{23}i}{5}+1
10 ದಿಂದ 10-4i\sqrt{23} ಭಾಗಿಸಿ.
x=\frac{2\sqrt{23}i}{5}+1 x=-\frac{2\sqrt{23}i}{5}+1
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5x^{2}-10x+\frac{117}{5}=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
5x^{2}-10x+\frac{117}{5}-\frac{117}{5}=-\frac{117}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{117}{5} ಕಳೆಯಿರಿ.
5x^{2}-10x=-\frac{117}{5}
\frac{117}{5} ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{5x^{2}-10x}{5}=-\frac{\frac{117}{5}}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{10}{5}\right)x=-\frac{\frac{117}{5}}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-2x=-\frac{\frac{117}{5}}{5}
5 ದಿಂದ -10 ಭಾಗಿಸಿ.
x^{2}-2x=-\frac{117}{25}
5 ದಿಂದ -\frac{117}{5} ಭಾಗಿಸಿ.
x^{2}-2x+1=-\frac{117}{25}+1
-1 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -2 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -1 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-2x+1=-\frac{92}{25}
1 ಗೆ -\frac{117}{25} ಸೇರಿಸಿ.
\left(x-1\right)^{2}=-\frac{92}{25}
ಅಪವರ್ತನ x^{2}-2x+1. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-1\right)^{2}}=\sqrt{-\frac{92}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-1=\frac{2\sqrt{23}i}{5} x-1=-\frac{2\sqrt{23}i}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{2\sqrt{23}i}{5}+1 x=-\frac{2\sqrt{23}i}{5}+1
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 1 ಸೇರಿಸಿ.