ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5x^{2}+8x-7=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-8±\sqrt{8^{2}-4\times 5\left(-7\right)}}{2\times 5}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-8±\sqrt{64-4\times 5\left(-7\right)}}{2\times 5}
ವರ್ಗ 8.
x=\frac{-8±\sqrt{64-20\left(-7\right)}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8±\sqrt{64+140}}{2\times 5}
-7 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-8±\sqrt{204}}{2\times 5}
140 ಗೆ 64 ಸೇರಿಸಿ.
x=\frac{-8±2\sqrt{51}}{2\times 5}
204 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-8±2\sqrt{51}}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{51}-8}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-8±2\sqrt{51}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{51} ಗೆ -8 ಸೇರಿಸಿ.
x=\frac{\sqrt{51}-4}{5}
10 ದಿಂದ -8+2\sqrt{51} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{51}-8}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-8±2\sqrt{51}}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -8 ದಿಂದ 2\sqrt{51} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{51}-4}{5}
10 ದಿಂದ -8-2\sqrt{51} ಭಾಗಿಸಿ.
5x^{2}+8x-7=5\left(x-\frac{\sqrt{51}-4}{5}\right)\left(x-\frac{-\sqrt{51}-4}{5}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{-4+\sqrt{51}}{5} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{-4-\sqrt{51}}{5} ನ್ನು ಬಳಸಿ.