ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
w ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

5w^{2}+16w=-3
ಎರಡೂ ಬದಿಗಳಿಗೆ 16w ಸೇರಿಸಿ.
5w^{2}+16w+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
a+b=16 ab=5\times 3=15
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 5w^{2}+aw+bw+3 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,15 3,5
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 15 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+15=16 3+5=8
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=1 b=15
ಪರಿಹಾರವು 16 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(5w^{2}+w\right)+\left(15w+3\right)
\left(5w^{2}+w\right)+\left(15w+3\right) ನ ಹಾಗೆ 5w^{2}+16w+3 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
w\left(5w+1\right)+3\left(5w+1\right)
ಮೊದಲನೆಯದರಲ್ಲಿ w ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(5w+1\right)\left(w+3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 5w+1 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
w=-\frac{1}{5} w=-3
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 5w+1=0 ಮತ್ತು w+3=0 ಪರಿಹರಿಸಿ.
5w^{2}+16w=-3
ಎರಡೂ ಬದಿಗಳಿಗೆ 16w ಸೇರಿಸಿ.
5w^{2}+16w+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
w=\frac{-16±\sqrt{16^{2}-4\times 5\times 3}}{2\times 5}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 5, b ಗೆ 16 ಮತ್ತು c ಗೆ 3 ಬದಲಿಸಿ.
w=\frac{-16±\sqrt{256-4\times 5\times 3}}{2\times 5}
ವರ್ಗ 16.
w=\frac{-16±\sqrt{256-20\times 3}}{2\times 5}
5 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
w=\frac{-16±\sqrt{256-60}}{2\times 5}
3 ಅನ್ನು -20 ಬಾರಿ ಗುಣಿಸಿ.
w=\frac{-16±\sqrt{196}}{2\times 5}
-60 ಗೆ 256 ಸೇರಿಸಿ.
w=\frac{-16±14}{2\times 5}
196 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
w=\frac{-16±14}{10}
5 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
w=-\frac{2}{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ w=\frac{-16±14}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 14 ಗೆ -16 ಸೇರಿಸಿ.
w=-\frac{1}{5}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-2}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
w=-\frac{30}{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ w=\frac{-16±14}{10} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -16 ದಿಂದ 14 ಕಳೆಯಿರಿ.
w=-3
10 ದಿಂದ -30 ಭಾಗಿಸಿ.
w=-\frac{1}{5} w=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
5w^{2}+16w=-3
ಎರಡೂ ಬದಿಗಳಿಗೆ 16w ಸೇರಿಸಿ.
\frac{5w^{2}+16w}{5}=-\frac{3}{5}
5 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
w^{2}+\frac{16}{5}w=-\frac{3}{5}
5 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
w^{2}+\frac{16}{5}w+\left(\frac{8}{5}\right)^{2}=-\frac{3}{5}+\left(\frac{8}{5}\right)^{2}
\frac{8}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{16}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{8}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
w^{2}+\frac{16}{5}w+\frac{64}{25}=-\frac{3}{5}+\frac{64}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{8}{5} ವರ್ಗಗೊಳಿಸಿ.
w^{2}+\frac{16}{5}w+\frac{64}{25}=\frac{49}{25}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{64}{25} ಗೆ -\frac{3}{5} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(w+\frac{8}{5}\right)^{2}=\frac{49}{25}
ಅಪವರ್ತನ w^{2}+\frac{16}{5}w+\frac{64}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(w+\frac{8}{5}\right)^{2}}=\sqrt{\frac{49}{25}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
w+\frac{8}{5}=\frac{7}{5} w+\frac{8}{5}=-\frac{7}{5}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
w=-\frac{1}{5} w=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{8}{5} ಕಳೆಯಿರಿ.