m ಪರಿಹರಿಸಿ
\left\{\begin{matrix}m=\frac{np}{5n+q}\text{, }&n\neq 0\text{ and }p\neq 0\text{ and }q\neq -5n\\m\neq 0\text{, }&n\neq 0\text{ and }q=-5n\text{ and }p=0\end{matrix}\right.
n ಪರಿಹರಿಸಿ
\left\{\begin{matrix}n=-\frac{mq}{5m-p}\text{, }&m\neq 0\text{ and }q\neq 0\text{ and }p\neq 5m\\n\neq 0\text{, }&m\neq 0\text{ and }p=5m\text{ and }q=0\end{matrix}\right.
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
5mn=np-mq
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ m ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು mn, m,n ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
5mn+mq=np
ಎರಡೂ ಬದಿಗಳಿಗೆ mq ಸೇರಿಸಿ.
\left(5n+q\right)m=np
m ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(5n+q\right)m}{5n+q}=\frac{np}{5n+q}
5n+q ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m=\frac{np}{5n+q}
5n+q ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5n+q ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
m=\frac{np}{5n+q}\text{, }m\neq 0
m ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
5mn=np-mq
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ n ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು mn, m,n ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
5mn-np=-mq
ಎರಡೂ ಕಡೆಗಳಿಂದ np ಕಳೆಯಿರಿ.
\left(5m-p\right)n=-mq
n ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(5m-p\right)n}{5m-p}=-\frac{mq}{5m-p}
5m-p ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n=-\frac{mq}{5m-p}
5m-p ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 5m-p ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
n=-\frac{mq}{5m-p}\text{, }n\neq 0
n ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮಾನಾಗಿರಬಾರದು.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}