ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

44\times 2=x\left(x-3\right)
2 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
88=x\left(x-3\right)
88 ಪಡೆದುಕೊಳ್ಳಲು 44 ಮತ್ತು 2 ಗುಣಿಸಿ.
88=x^{2}-3x
x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3x=88
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}-3x-88=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 88 ಕಳೆಯಿರಿ.
x=\frac{-\left(-3\right)±\sqrt{\left(-3\right)^{2}-4\left(-88\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -3 ಮತ್ತು c ಗೆ -88 ಬದಲಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{9-4\left(-88\right)}}{2}
ವರ್ಗ -3.
x=\frac{-\left(-3\right)±\sqrt{9+352}}{2}
-88 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-3\right)±\sqrt{361}}{2}
352 ಗೆ 9 ಸೇರಿಸಿ.
x=\frac{-\left(-3\right)±19}{2}
361 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{3±19}{2}
-3 ನ ವಿಲೋಮವು 3 ಆಗಿದೆ.
x=\frac{22}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±19}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 19 ಗೆ 3 ಸೇರಿಸಿ.
x=11
2 ದಿಂದ 22 ಭಾಗಿಸಿ.
x=-\frac{16}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{3±19}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3 ದಿಂದ 19 ಕಳೆಯಿರಿ.
x=-8
2 ದಿಂದ -16 ಭಾಗಿಸಿ.
x=11 x=-8
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
44\times 2=x\left(x-3\right)
2 ಮೂಲಕ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
88=x\left(x-3\right)
88 ಪಡೆದುಕೊಳ್ಳಲು 44 ಮತ್ತು 2 ಗುಣಿಸಿ.
88=x^{2}-3x
x-3 ದಿಂದ x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
x^{2}-3x=88
ಎಲ್ಲಾ ವೇರಿಯೇಬಲ್ ಪದಗಳು ಎಡಬದಿಯಲ್ಲಿರುವಂತೆ ಬದಿಗಳನ್ನು ಬದಲಿಕೆ ಮಾಡಿ.
x^{2}-3x+\left(-\frac{3}{2}\right)^{2}=88+\left(-\frac{3}{2}\right)^{2}
-\frac{3}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -3 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{3}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-3x+\frac{9}{4}=88+\frac{9}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{3}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-3x+\frac{9}{4}=\frac{361}{4}
\frac{9}{4} ಗೆ 88 ಸೇರಿಸಿ.
\left(x-\frac{3}{2}\right)^{2}=\frac{361}{4}
ಅಪವರ್ತನ x^{2}-3x+\frac{9}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{3}{2}\right)^{2}}=\sqrt{\frac{361}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{3}{2}=\frac{19}{2} x-\frac{3}{2}=-\frac{19}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=11 x=-8
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{3}{2} ಸೇರಿಸಿ.