ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

42x^{2}+13x-35=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-13±\sqrt{13^{2}-4\times 42\left(-35\right)}}{2\times 42}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 42, b ಗೆ 13 ಮತ್ತು c ಗೆ -35 ಬದಲಿಸಿ.
x=\frac{-13±\sqrt{169-4\times 42\left(-35\right)}}{2\times 42}
ವರ್ಗ 13.
x=\frac{-13±\sqrt{169-168\left(-35\right)}}{2\times 42}
42 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-13±\sqrt{169+5880}}{2\times 42}
-35 ಅನ್ನು -168 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-13±\sqrt{6049}}{2\times 42}
5880 ಗೆ 169 ಸೇರಿಸಿ.
x=\frac{-13±\sqrt{6049}}{84}
42 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{6049}-13}{84}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-13±\sqrt{6049}}{84} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{6049} ಗೆ -13 ಸೇರಿಸಿ.
x=\frac{-\sqrt{6049}-13}{84}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-13±\sqrt{6049}}{84} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -13 ದಿಂದ \sqrt{6049} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{6049}-13}{84} x=\frac{-\sqrt{6049}-13}{84}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
42x^{2}+13x-35=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
42x^{2}+13x-35-\left(-35\right)=-\left(-35\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 35 ಸೇರಿಸಿ.
42x^{2}+13x=-\left(-35\right)
-35 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
42x^{2}+13x=35
0 ದಿಂದ -35 ಕಳೆಯಿರಿ.
\frac{42x^{2}+13x}{42}=\frac{35}{42}
42 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{13}{42}x=\frac{35}{42}
42 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 42 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{13}{42}x=\frac{5}{6}
7 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{35}{42} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{13}{42}x+\left(\frac{13}{84}\right)^{2}=\frac{5}{6}+\left(\frac{13}{84}\right)^{2}
\frac{13}{84} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{13}{42} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{13}{84} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{13}{42}x+\frac{169}{7056}=\frac{5}{6}+\frac{169}{7056}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{13}{84} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{13}{42}x+\frac{169}{7056}=\frac{6049}{7056}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{169}{7056} ಗೆ \frac{5}{6} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{13}{84}\right)^{2}=\frac{6049}{7056}
ಅಪವರ್ತನ x^{2}+\frac{13}{42}x+\frac{169}{7056}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{13}{84}\right)^{2}}=\sqrt{\frac{6049}{7056}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{13}{84}=\frac{\sqrt{6049}}{84} x+\frac{13}{84}=-\frac{\sqrt{6049}}{84}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{6049}-13}{84} x=\frac{-\sqrt{6049}-13}{84}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{13}{84} ಕಳೆಯಿರಿ.