x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{58+4\sqrt{26}i}{7}\approx 8.285714286+2.913725436i
x=\frac{-4\sqrt{26}i+58}{7}\approx 8.285714286-2.913725436i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
42x^{2}-696x+3240=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-696\right)±\sqrt{\left(-696\right)^{2}-4\times 42\times 3240}}{2\times 42}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 42, b ಗೆ -696 ಮತ್ತು c ಗೆ 3240 ಬದಲಿಸಿ.
x=\frac{-\left(-696\right)±\sqrt{484416-4\times 42\times 3240}}{2\times 42}
ವರ್ಗ -696.
x=\frac{-\left(-696\right)±\sqrt{484416-168\times 3240}}{2\times 42}
42 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-696\right)±\sqrt{484416-544320}}{2\times 42}
3240 ಅನ್ನು -168 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-696\right)±\sqrt{-59904}}{2\times 42}
-544320 ಗೆ 484416 ಸೇರಿಸಿ.
x=\frac{-\left(-696\right)±48\sqrt{26}i}{2\times 42}
-59904 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{696±48\sqrt{26}i}{2\times 42}
-696 ನ ವಿಲೋಮವು 696 ಆಗಿದೆ.
x=\frac{696±48\sqrt{26}i}{84}
42 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{696+48\sqrt{26}i}{84}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{696±48\sqrt{26}i}{84} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 48i\sqrt{26} ಗೆ 696 ಸೇರಿಸಿ.
x=\frac{58+4\sqrt{26}i}{7}
84 ದಿಂದ 696+48i\sqrt{26} ಭಾಗಿಸಿ.
x=\frac{-48\sqrt{26}i+696}{84}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{696±48\sqrt{26}i}{84} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 696 ದಿಂದ 48i\sqrt{26} ಕಳೆಯಿರಿ.
x=\frac{-4\sqrt{26}i+58}{7}
84 ದಿಂದ 696-48i\sqrt{26} ಭಾಗಿಸಿ.
x=\frac{58+4\sqrt{26}i}{7} x=\frac{-4\sqrt{26}i+58}{7}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
42x^{2}-696x+3240=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
42x^{2}-696x+3240-3240=-3240
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3240 ಕಳೆಯಿರಿ.
42x^{2}-696x=-3240
3240 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{42x^{2}-696x}{42}=-\frac{3240}{42}
42 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{696}{42}\right)x=-\frac{3240}{42}
42 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 42 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{116}{7}x=-\frac{3240}{42}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-696}{42} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{116}{7}x=-\frac{540}{7}
6 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-3240}{42} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{116}{7}x+\left(-\frac{58}{7}\right)^{2}=-\frac{540}{7}+\left(-\frac{58}{7}\right)^{2}
-\frac{58}{7} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{116}{7} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{58}{7} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{116}{7}x+\frac{3364}{49}=-\frac{540}{7}+\frac{3364}{49}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{58}{7} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{116}{7}x+\frac{3364}{49}=-\frac{416}{49}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{3364}{49} ಗೆ -\frac{540}{7} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{58}{7}\right)^{2}=-\frac{416}{49}
ಅಪವರ್ತನ x^{2}-\frac{116}{7}x+\frac{3364}{49}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{58}{7}\right)^{2}}=\sqrt{-\frac{416}{49}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{58}{7}=\frac{4\sqrt{26}i}{7} x-\frac{58}{7}=-\frac{4\sqrt{26}i}{7}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{58+4\sqrt{26}i}{7} x=\frac{-4\sqrt{26}i+58}{7}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{58}{7} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}