t ಪರಿಹರಿಸಿ
t=\frac{61}{110}\approx 0.554545455
t=0
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
t\left(4.4t-2.44\right)=0
t ಅಪವರ್ತನಗೊಳಿಸಿ.
t=0 t=\frac{61}{110}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, t=0 ಮತ್ತು \frac{22t}{5}-2.44=0 ಪರಿಹರಿಸಿ.
4.4t^{2}-2.44t=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
t=\frac{-\left(-2.44\right)±\sqrt{\left(-2.44\right)^{2}}}{2\times 4.4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4.4, b ಗೆ -2.44 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
t=\frac{-\left(-2.44\right)±\frac{61}{25}}{2\times 4.4}
\left(-2.44\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t=\frac{2.44±\frac{61}{25}}{2\times 4.4}
-2.44 ನ ವಿಲೋಮವು 2.44 ಆಗಿದೆ.
t=\frac{2.44±\frac{61}{25}}{8.8}
4.4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{\frac{122}{25}}{8.8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{2.44±\frac{61}{25}}{8.8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{61}{25} ಗೆ 2.44 ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
t=\frac{61}{110}
8.8 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ \frac{122}{25} ಗುಣಿಸುವ ಮೂಲಕ 8.8 ದಿಂದ \frac{122}{25} ಭಾಗಿಸಿ.
t=\frac{0}{8.8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{2.44±\frac{61}{25}}{8.8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ 2.44 ದಿಂದ \frac{61}{25} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
t=0
8.8 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 0 ಗುಣಿಸುವ ಮೂಲಕ 8.8 ದಿಂದ 0 ಭಾಗಿಸಿ.
t=\frac{61}{110} t=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4.4t^{2}-2.44t=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{4.4t^{2}-2.44t}{4.4}=\frac{0}{4.4}
ಭಿನ್ನಾಂಕದ ವ್ಯುತ್ಕ್ರಮದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿದಾಗ ಯಾವುದು ಒಂದೇ ಬರುತ್ತದೆಯೋ, 4.4 ದಿಂದ ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
t^{2}+\left(-\frac{2.44}{4.4}\right)t=\frac{0}{4.4}
4.4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4.4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
t^{2}-\frac{61}{110}t=\frac{0}{4.4}
4.4 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ -2.44 ಗುಣಿಸುವ ಮೂಲಕ 4.4 ದಿಂದ -2.44 ಭಾಗಿಸಿ.
t^{2}-\frac{61}{110}t=0
4.4 ನ ವ್ಯುತ್ಕ್ರಮದಿಂದ 0 ಗುಣಿಸುವ ಮೂಲಕ 4.4 ದಿಂದ 0 ಭಾಗಿಸಿ.
t^{2}-\frac{61}{110}t+\left(-\frac{61}{220}\right)^{2}=\left(-\frac{61}{220}\right)^{2}
-\frac{61}{220} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{61}{110} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{61}{220} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
t^{2}-\frac{61}{110}t+\frac{3721}{48400}=\frac{3721}{48400}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{61}{220} ವರ್ಗಗೊಳಿಸಿ.
\left(t-\frac{61}{220}\right)^{2}=\frac{3721}{48400}
ಅಪವರ್ತನ t^{2}-\frac{61}{110}t+\frac{3721}{48400}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(t-\frac{61}{220}\right)^{2}}=\sqrt{\frac{3721}{48400}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
t-\frac{61}{220}=\frac{61}{220} t-\frac{61}{220}=-\frac{61}{220}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
t=\frac{61}{110} t=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{61}{220} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}