ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
z ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4z^{2}-4z+13=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
z=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 4\times 13}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ -4 ಮತ್ತು c ಗೆ 13 ಬದಲಿಸಿ.
z=\frac{-\left(-4\right)±\sqrt{16-4\times 4\times 13}}{2\times 4}
ವರ್ಗ -4.
z=\frac{-\left(-4\right)±\sqrt{16-16\times 13}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{-\left(-4\right)±\sqrt{16-208}}{2\times 4}
13 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{-\left(-4\right)±\sqrt{-192}}{2\times 4}
-208 ಗೆ 16 ಸೇರಿಸಿ.
z=\frac{-\left(-4\right)±8\sqrt{3}i}{2\times 4}
-192 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z=\frac{4±8\sqrt{3}i}{2\times 4}
-4 ನ ವಿಲೋಮವು 4 ಆಗಿದೆ.
z=\frac{4±8\sqrt{3}i}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{4+8\sqrt{3}i}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{4±8\sqrt{3}i}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8i\sqrt{3} ಗೆ 4 ಸೇರಿಸಿ.
z=\frac{1}{2}+\sqrt{3}i
8 ದಿಂದ 4+8i\sqrt{3} ಭಾಗಿಸಿ.
z=\frac{-8\sqrt{3}i+4}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{4±8\sqrt{3}i}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ದಿಂದ 8i\sqrt{3} ಕಳೆಯಿರಿ.
z=-\sqrt{3}i+\frac{1}{2}
8 ದಿಂದ 4-8i\sqrt{3} ಭಾಗಿಸಿ.
z=\frac{1}{2}+\sqrt{3}i z=-\sqrt{3}i+\frac{1}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4z^{2}-4z+13=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
4z^{2}-4z+13-13=-13
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 13 ಕಳೆಯಿರಿ.
4z^{2}-4z=-13
13 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{4z^{2}-4z}{4}=-\frac{13}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
z^{2}+\left(-\frac{4}{4}\right)z=-\frac{13}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
z^{2}-z=-\frac{13}{4}
4 ದಿಂದ -4 ಭಾಗಿಸಿ.
z^{2}-z+\left(-\frac{1}{2}\right)^{2}=-\frac{13}{4}+\left(-\frac{1}{2}\right)^{2}
-\frac{1}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -1 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
z^{2}-z+\frac{1}{4}=\frac{-13+1}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{2} ವರ್ಗಗೊಳಿಸಿ.
z^{2}-z+\frac{1}{4}=-3
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{4} ಗೆ -\frac{13}{4} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(z-\frac{1}{2}\right)^{2}=-3
ಅಪವರ್ತನ z^{2}-z+\frac{1}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(z-\frac{1}{2}\right)^{2}}=\sqrt{-3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z-\frac{1}{2}=\sqrt{3}i z-\frac{1}{2}=-\sqrt{3}i
ಸರಳೀಕೃತಗೊಳಿಸಿ.
z=\frac{1}{2}+\sqrt{3}i z=-\sqrt{3}i+\frac{1}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{2} ಸೇರಿಸಿ.