y ಪರಿಹರಿಸಿ
y=14
y=0
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
y\left(4y-89+33\right)=0
y ಅಪವರ್ತನಗೊಳಿಸಿ.
y=0 y=14
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, y=0 ಮತ್ತು 4y-56=0 ಪರಿಹರಿಸಿ.
4y^{2}-56y=0
-56y ಪಡೆದುಕೊಳ್ಳಲು -89y ಮತ್ತು 33y ಕೂಡಿಸಿ.
y=\frac{-\left(-56\right)±\sqrt{\left(-56\right)^{2}}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ -56 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
y=\frac{-\left(-56\right)±56}{2\times 4}
\left(-56\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y=\frac{56±56}{2\times 4}
-56 ನ ವಿಲೋಮವು 56 ಆಗಿದೆ.
y=\frac{56±56}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
y=\frac{112}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{56±56}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 56 ಗೆ 56 ಸೇರಿಸಿ.
y=14
8 ದಿಂದ 112 ಭಾಗಿಸಿ.
y=\frac{0}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ y=\frac{56±56}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 56 ದಿಂದ 56 ಕಳೆಯಿರಿ.
y=0
8 ದಿಂದ 0 ಭಾಗಿಸಿ.
y=14 y=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4y^{2}-56y=0
-56y ಪಡೆದುಕೊಳ್ಳಲು -89y ಮತ್ತು 33y ಕೂಡಿಸಿ.
\frac{4y^{2}-56y}{4}=\frac{0}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
y^{2}+\left(-\frac{56}{4}\right)y=\frac{0}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
y^{2}-14y=\frac{0}{4}
4 ದಿಂದ -56 ಭಾಗಿಸಿ.
y^{2}-14y=0
4 ದಿಂದ 0 ಭಾಗಿಸಿ.
y^{2}-14y+\left(-7\right)^{2}=\left(-7\right)^{2}
-7 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -14 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -7 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
y^{2}-14y+49=49
ವರ್ಗ -7.
\left(y-7\right)^{2}=49
ಅಪವರ್ತನ y^{2}-14y+49. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(y-7\right)^{2}}=\sqrt{49}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
y-7=7 y-7=-7
ಸರಳೀಕೃತಗೊಳಿಸಿ.
y=14 y=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 7 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}