ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಅಪವರ್ತನ
Tick mark Image
ಮೌಲ್ಯಮಾಪನ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4x^{2}-20x+5=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
x=\frac{-\left(-20\right)±\sqrt{\left(-20\right)^{2}-4\times 4\times 5}}{2\times 4}
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-20\right)±\sqrt{400-4\times 4\times 5}}{2\times 4}
ವರ್ಗ -20.
x=\frac{-\left(-20\right)±\sqrt{400-16\times 5}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{400-80}}{2\times 4}
5 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-20\right)±\sqrt{320}}{2\times 4}
-80 ಗೆ 400 ಸೇರಿಸಿ.
x=\frac{-\left(-20\right)±8\sqrt{5}}{2\times 4}
320 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{20±8\sqrt{5}}{2\times 4}
-20 ನ ವಿಲೋಮವು 20 ಆಗಿದೆ.
x=\frac{20±8\sqrt{5}}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{8\sqrt{5}+20}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{20±8\sqrt{5}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8\sqrt{5} ಗೆ 20 ಸೇರಿಸಿ.
x=\sqrt{5}+\frac{5}{2}
8 ದಿಂದ 20+8\sqrt{5} ಭಾಗಿಸಿ.
x=\frac{20-8\sqrt{5}}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{20±8\sqrt{5}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 20 ದಿಂದ 8\sqrt{5} ಕಳೆಯಿರಿ.
x=\frac{5}{2}-\sqrt{5}
8 ದಿಂದ 20-8\sqrt{5} ಭಾಗಿಸಿ.
4x^{2}-20x+5=4\left(x-\left(\sqrt{5}+\frac{5}{2}\right)\right)\left(x-\left(\frac{5}{2}-\sqrt{5}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{5}{2}+\sqrt{5} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{5}{2}-\sqrt{5} ನ್ನು ಬಳಸಿ.