x ಪರಿಹರಿಸಿ
x = \frac{3 \sqrt{2}}{2} \approx 2.121320344
x = -\frac{3 \sqrt{2}}{2} \approx -2.121320344
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4x^{2}=16+2
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ.
4x^{2}=18
18 ಪಡೆದುಕೊಳ್ಳಲು 16 ಮತ್ತು 2 ಸೇರಿಸಿ.
x^{2}=\frac{18}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}=\frac{9}{2}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{18}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
4x^{2}-2-16=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 16 ಕಳೆಯಿರಿ.
4x^{2}-18=0
-18 ಪಡೆದುಕೊಳ್ಳಲು -2 ದಿಂದ 16 ಕಳೆಯಿರಿ.
x=\frac{0±\sqrt{0^{2}-4\times 4\left(-18\right)}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ 0 ಮತ್ತು c ಗೆ -18 ಬದಲಿಸಿ.
x=\frac{0±\sqrt{-4\times 4\left(-18\right)}}{2\times 4}
ವರ್ಗ 0.
x=\frac{0±\sqrt{-16\left(-18\right)}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±\sqrt{288}}{2\times 4}
-18 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{0±12\sqrt{2}}{2\times 4}
288 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{0±12\sqrt{2}}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{3\sqrt{2}}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±12\sqrt{2}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=-\frac{3\sqrt{2}}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{0±12\sqrt{2}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
x=\frac{3\sqrt{2}}{2} x=-\frac{3\sqrt{2}}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}