ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4x^{2}+8+5x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 5x ಸೇರಿಸಿ.
4x^{2}+5x+8=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-5±\sqrt{5^{2}-4\times 4\times 8}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ 5 ಮತ್ತು c ಗೆ 8 ಬದಲಿಸಿ.
x=\frac{-5±\sqrt{25-4\times 4\times 8}}{2\times 4}
ವರ್ಗ 5.
x=\frac{-5±\sqrt{25-16\times 8}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{25-128}}{2\times 4}
8 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5±\sqrt{-103}}{2\times 4}
-128 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{-5±\sqrt{103}i}{2\times 4}
-103 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-5±\sqrt{103}i}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-5+\sqrt{103}i}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±\sqrt{103}i}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. i\sqrt{103} ಗೆ -5 ಸೇರಿಸಿ.
x=\frac{-\sqrt{103}i-5}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-5±\sqrt{103}i}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -5 ದಿಂದ i\sqrt{103} ಕಳೆಯಿರಿ.
x=\frac{-5+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i-5}{8}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4x^{2}+8+5x=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 5x ಸೇರಿಸಿ.
4x^{2}+5x=-8
ಎರಡೂ ಕಡೆಗಳಿಂದ 8 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
\frac{4x^{2}+5x}{4}=-\frac{8}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{5}{4}x=-\frac{8}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{5}{4}x=-2
4 ದಿಂದ -8 ಭಾಗಿಸಿ.
x^{2}+\frac{5}{4}x+\left(\frac{5}{8}\right)^{2}=-2+\left(\frac{5}{8}\right)^{2}
\frac{5}{8} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{5}{4} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{8} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-2+\frac{25}{64}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{8} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{5}{4}x+\frac{25}{64}=-\frac{103}{64}
\frac{25}{64} ಗೆ -2 ಸೇರಿಸಿ.
\left(x+\frac{5}{8}\right)^{2}=-\frac{103}{64}
ಅಪವರ್ತನ x^{2}+\frac{5}{4}x+\frac{25}{64}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{8}\right)^{2}}=\sqrt{-\frac{103}{64}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{8}=\frac{\sqrt{103}i}{8} x+\frac{5}{8}=-\frac{\sqrt{103}i}{8}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{-5+\sqrt{103}i}{8} x=\frac{-\sqrt{103}i-5}{8}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{8} ಕಳೆಯಿರಿ.