ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4x^{2}+7x-8-x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
4x^{2}+6x-8=0
6x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -x ಕೂಡಿಸಿ.
x=\frac{-6±\sqrt{6^{2}-4\times 4\left(-8\right)}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ 6 ಮತ್ತು c ಗೆ -8 ಬದಲಿಸಿ.
x=\frac{-6±\sqrt{36-4\times 4\left(-8\right)}}{2\times 4}
ವರ್ಗ 6.
x=\frac{-6±\sqrt{36-16\left(-8\right)}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{36+128}}{2\times 4}
-8 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-6±\sqrt{164}}{2\times 4}
128 ಗೆ 36 ಸೇರಿಸಿ.
x=\frac{-6±2\sqrt{41}}{2\times 4}
164 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-6±2\sqrt{41}}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{41}-6}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±2\sqrt{41}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{41} ಗೆ -6 ಸೇರಿಸಿ.
x=\frac{\sqrt{41}-3}{4}
8 ದಿಂದ -6+2\sqrt{41} ಭಾಗಿಸಿ.
x=\frac{-2\sqrt{41}-6}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-6±2\sqrt{41}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -6 ದಿಂದ 2\sqrt{41} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{41}-3}{4}
8 ದಿಂದ -6-2\sqrt{41} ಭಾಗಿಸಿ.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4x^{2}+7x-8-x=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x ಕಳೆಯಿರಿ.
4x^{2}+6x-8=0
6x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -x ಕೂಡಿಸಿ.
4x^{2}+6x=8
ಎರಡೂ ಬದಿಗಳಿಗೆ 8 ಸೇರಿಸಿ. ಯಾವುದಾದರ ಜೊತೆಗೆ ಶೂನ್ಯವನ್ನು ಸೇರಿಸಿದರೆ ಅದೇ ಮೊತ್ತ ಬರುತ್ತದೆ.
\frac{4x^{2}+6x}{4}=\frac{8}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{6}{4}x=\frac{8}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{3}{2}x=\frac{8}{4}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{6}{4} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}+\frac{3}{2}x=2
4 ದಿಂದ 8 ಭಾಗಿಸಿ.
x^{2}+\frac{3}{2}x+\left(\frac{3}{4}\right)^{2}=2+\left(\frac{3}{4}\right)^{2}
\frac{3}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{3}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{3}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=2+\frac{9}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{3}{4} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{3}{2}x+\frac{9}{16}=\frac{41}{16}
\frac{9}{16} ಗೆ 2 ಸೇರಿಸಿ.
\left(x+\frac{3}{4}\right)^{2}=\frac{41}{16}
ಅಪವರ್ತನ x^{2}+\frac{3}{2}x+\frac{9}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{3}{4}\right)^{2}}=\sqrt{\frac{41}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{3}{4}=\frac{\sqrt{41}}{4} x+\frac{3}{4}=-\frac{\sqrt{41}}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{41}-3}{4} x=\frac{-\sqrt{41}-3}{4}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{3}{4} ಕಳೆಯಿರಿ.