x ಪರಿಹರಿಸಿ
x=-2
x=7
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4x^{2}+7x-17-3x^{2}=12x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
x^{2}+7x-17=12x-3
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}+7x-17-12x=-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
x^{2}-5x-17=-3
-5x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -12x ಕೂಡಿಸಿ.
x^{2}-5x-17+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
x^{2}-5x-14=0
-14 ಪಡೆದುಕೊಳ್ಳಲು -17 ಮತ್ತು 3 ಸೇರಿಸಿ.
a+b=-5 ab=-14
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು x^{2}-5x-14 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-14 2,-7
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -14 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-14=-13 2-7=-5
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-7 b=2
ಪರಿಹಾರವು -5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x-7\right)\left(x+2\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(x+a\right)\left(x+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x=7 x=-2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-7=0 ಮತ್ತು x+2=0 ಪರಿಹರಿಸಿ.
4x^{2}+7x-17-3x^{2}=12x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
x^{2}+7x-17=12x-3
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}+7x-17-12x=-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
x^{2}-5x-17=-3
-5x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -12x ಕೂಡಿಸಿ.
x^{2}-5x-17+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
x^{2}-5x-14=0
-14 ಪಡೆದುಕೊಳ್ಳಲು -17 ಮತ್ತು 3 ಸೇರಿಸಿ.
a+b=-5 ab=1\left(-14\right)=-14
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx-14 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-14 2,-7
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -14 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-14=-13 2-7=-5
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-7 b=2
ಪರಿಹಾರವು -5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-7x\right)+\left(2x-14\right)
\left(x^{2}-7x\right)+\left(2x-14\right) ನ ಹಾಗೆ x^{2}-5x-14 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-7\right)+2\left(x-7\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-7\right)\left(x+2\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=7 x=-2
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-7=0 ಮತ್ತು x+2=0 ಪರಿಹರಿಸಿ.
4x^{2}+7x-17-3x^{2}=12x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
x^{2}+7x-17=12x-3
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}+7x-17-12x=-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
x^{2}-5x-17=-3
-5x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -12x ಕೂಡಿಸಿ.
x^{2}-5x-17+3=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 3 ಸೇರಿಸಿ.
x^{2}-5x-14=0
-14 ಪಡೆದುಕೊಳ್ಳಲು -17 ಮತ್ತು 3 ಸೇರಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{\left(-5\right)^{2}-4\left(-14\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ -5 ಮತ್ತು c ಗೆ -14 ಬದಲಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{25-4\left(-14\right)}}{2}
ವರ್ಗ -5.
x=\frac{-\left(-5\right)±\sqrt{25+56}}{2}
-14 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-5\right)±\sqrt{81}}{2}
56 ಗೆ 25 ಸೇರಿಸಿ.
x=\frac{-\left(-5\right)±9}{2}
81 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{5±9}{2}
-5 ನ ವಿಲೋಮವು 5 ಆಗಿದೆ.
x=\frac{14}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±9}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 9 ಗೆ 5 ಸೇರಿಸಿ.
x=7
2 ದಿಂದ 14 ಭಾಗಿಸಿ.
x=-\frac{4}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{5±9}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 5 ದಿಂದ 9 ಕಳೆಯಿರಿ.
x=-2
2 ದಿಂದ -4 ಭಾಗಿಸಿ.
x=7 x=-2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4x^{2}+7x-17-3x^{2}=12x-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3x^{2} ಕಳೆಯಿರಿ.
x^{2}+7x-17=12x-3
x^{2} ಪಡೆದುಕೊಳ್ಳಲು 4x^{2} ಮತ್ತು -3x^{2} ಕೂಡಿಸಿ.
x^{2}+7x-17-12x=-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 12x ಕಳೆಯಿರಿ.
x^{2}-5x-17=-3
-5x ಪಡೆದುಕೊಳ್ಳಲು 7x ಮತ್ತು -12x ಕೂಡಿಸಿ.
x^{2}-5x=-3+17
ಎರಡೂ ಬದಿಗಳಿಗೆ 17 ಸೇರಿಸಿ.
x^{2}-5x=14
14 ಪಡೆದುಕೊಳ್ಳಲು -3 ಮತ್ತು 17 ಸೇರಿಸಿ.
x^{2}-5x+\left(-\frac{5}{2}\right)^{2}=14+\left(-\frac{5}{2}\right)^{2}
-\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-5x+\frac{25}{4}=14+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-5x+\frac{25}{4}=\frac{81}{4}
\frac{25}{4} ಗೆ 14 ಸೇರಿಸಿ.
\left(x-\frac{5}{2}\right)^{2}=\frac{81}{4}
ಅಪವರ್ತನ x^{2}-5x+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{2}\right)^{2}}=\sqrt{\frac{81}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{2}=\frac{9}{2} x-\frac{5}{2}=-\frac{9}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=7 x=-2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{2} ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}