ಅಪವರ್ತನ
2\left(q-5\right)\left(2q-7\right)
ಮೌಲ್ಯಮಾಪನ
2\left(q-5\right)\left(2q-7\right)
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
2\left(2q^{2}-17q+35\right)
2 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=-17 ab=2\times 35=70
2q^{2}-17q+35 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 2q^{2}+aq+bq+35 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,-70 -2,-35 -5,-14 -7,-10
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಋಣಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 70 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1-70=-71 -2-35=-37 -5-14=-19 -7-10=-17
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-10 b=-7
ಪರಿಹಾರವು -17 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(2q^{2}-10q\right)+\left(-7q+35\right)
\left(2q^{2}-10q\right)+\left(-7q+35\right) ನ ಹಾಗೆ 2q^{2}-17q+35 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
2q\left(q-5\right)-7\left(q-5\right)
ಮೊದಲನೆಯದರಲ್ಲಿ 2q ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ -7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(q-5\right)\left(2q-7\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ q-5 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
2\left(q-5\right)\left(2q-7\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
4q^{2}-34q+70=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
q=\frac{-\left(-34\right)±\sqrt{\left(-34\right)^{2}-4\times 4\times 70}}{2\times 4}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
q=\frac{-\left(-34\right)±\sqrt{1156-4\times 4\times 70}}{2\times 4}
ವರ್ಗ -34.
q=\frac{-\left(-34\right)±\sqrt{1156-16\times 70}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
q=\frac{-\left(-34\right)±\sqrt{1156-1120}}{2\times 4}
70 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
q=\frac{-\left(-34\right)±\sqrt{36}}{2\times 4}
-1120 ಗೆ 1156 ಸೇರಿಸಿ.
q=\frac{-\left(-34\right)±6}{2\times 4}
36 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
q=\frac{34±6}{2\times 4}
-34 ನ ವಿಲೋಮವು 34 ಆಗಿದೆ.
q=\frac{34±6}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
q=\frac{40}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ q=\frac{34±6}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 6 ಗೆ 34 ಸೇರಿಸಿ.
q=5
8 ದಿಂದ 40 ಭಾಗಿಸಿ.
q=\frac{28}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ q=\frac{34±6}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 34 ದಿಂದ 6 ಕಳೆಯಿರಿ.
q=\frac{7}{2}
4 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{28}{8} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
4q^{2}-34q+70=4\left(q-5\right)\left(q-\frac{7}{2}\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 5 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{7}{2} ನ್ನು ಬಳಸಿ.
4q^{2}-34q+70=4\left(q-5\right)\times \frac{2q-7}{2}
ಸಾಮಾನ್ಯ ಛೇದ ಮತ್ತು ಅಂಶಗಳನ್ನು ಕಳೆಯುವಿಕೆಯನ್ನು ಹುಡುಕುವ ಮೂಲಕ q ದಿಂದ \frac{7}{2} ಕಳೆಯಿರಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
4q^{2}-34q+70=2\left(q-5\right)\left(2q-7\right)
4 ಮತ್ತು 2 ನಲ್ಲಿ ಅತ್ಯುತ್ತಮ ಸಾಮಾನ್ಯ ಅಂಶ 2 ಅನ್ನು ರದ್ದುಗೊಳಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}