a ಪರಿಹರಿಸಿ
a=-i\sqrt{3\sqrt{3}-4}+2\approx 2-1.093687534i
a=2+i\sqrt{3\sqrt{3}-4}\approx 2+1.093687534i
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
-a^{2}+4a=3\sqrt{3}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
-a^{2}+4a-3\sqrt{3}=3\sqrt{3}-3\sqrt{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 3\sqrt{3} ಕಳೆಯಿರಿ.
-a^{2}+4a-3\sqrt{3}=0
3\sqrt{3} ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
a=\frac{-4±\sqrt{4^{2}-4\left(-1\right)\left(-3\sqrt{3}\right)}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 4 ಮತ್ತು c ಗೆ -3\sqrt{3} ಬದಲಿಸಿ.
a=\frac{-4±\sqrt{16-4\left(-1\right)\left(-3\sqrt{3}\right)}}{2\left(-1\right)}
ವರ್ಗ 4.
a=\frac{-4±\sqrt{16+4\left(-3\sqrt{3}\right)}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-4±\sqrt{16-12\sqrt{3}}}{2\left(-1\right)}
-3\sqrt{3} ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{2\left(-1\right)}
16-12\sqrt{3} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
a=\frac{-4+2i\sqrt{3\sqrt{3}-4}}{-2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2i\sqrt{-\left(4-3\sqrt{3}\right)} ಗೆ -4 ಸೇರಿಸಿ.
a=-i\sqrt{3\sqrt{3}-4}+2
-2 ದಿಂದ -4+2i\sqrt{-4+3\sqrt{3}} ಭಾಗಿಸಿ.
a=\frac{-2i\sqrt{3\sqrt{3}-4}-4}{-2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ a=\frac{-4±2i\sqrt{-\left(4-3\sqrt{3}\right)}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -4 ದಿಂದ 2i\sqrt{-\left(4-3\sqrt{3}\right)} ಕಳೆಯಿರಿ.
a=2+i\sqrt{3\sqrt{3}-4}
-2 ದಿಂದ -4-2i\sqrt{-4+3\sqrt{3}} ಭಾಗಿಸಿ.
a=-i\sqrt{3\sqrt{3}-4}+2 a=2+i\sqrt{3\sqrt{3}-4}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
-a^{2}+4a=3\sqrt{3}
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
\frac{-a^{2}+4a}{-1}=\frac{3\sqrt{3}}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
a^{2}+\frac{4}{-1}a=\frac{3\sqrt{3}}{-1}
-1 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ -1 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
a^{2}-4a=\frac{3\sqrt{3}}{-1}
-1 ದಿಂದ 4 ಭಾಗಿಸಿ.
a^{2}-4a=-3\sqrt{3}
-1 ದಿಂದ 3\sqrt{3} ಭಾಗಿಸಿ.
a^{2}-4a+\left(-2\right)^{2}=-3\sqrt{3}+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
a^{2}-4a+4=-3\sqrt{3}+4
ವರ್ಗ -2.
a^{2}-4a+4=4-3\sqrt{3}
4 ಗೆ -3\sqrt{3} ಸೇರಿಸಿ.
\left(a-2\right)^{2}=4-3\sqrt{3}
ಅಪವರ್ತನ a^{2}-4a+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(a-2\right)^{2}}=\sqrt{4-3\sqrt{3}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
a-2=i\sqrt{-\left(4-3\sqrt{3}\right)} a-2=-i\sqrt{3\sqrt{3}-4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
a=2+i\sqrt{3\sqrt{3}-4} a=-i\sqrt{3\sqrt{3}-4}+2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}