k ಪರಿಹರಿಸಿ
k\geq -1
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4\left(k^{2}+2k+1\right)-4\left(k+1\right)\left(k-2\right)\geq 0
\left(k+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
4k^{2}+8k+4-4\left(k+1\right)\left(k-2\right)\geq 0
k^{2}+2k+1 ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4k^{2}+8k+4+\left(-4k-4\right)\left(k-2\right)\geq 0
k+1 ದಿಂದ -4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
4k^{2}+8k+4-4k^{2}+4k+8\geq 0
k-2 ರಿಂದು -4k-4 ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
8k+4+4k+8\geq 0
0 ಪಡೆದುಕೊಳ್ಳಲು 4k^{2} ಮತ್ತು -4k^{2} ಕೂಡಿಸಿ.
12k+4+8\geq 0
12k ಪಡೆದುಕೊಳ್ಳಲು 8k ಮತ್ತು 4k ಕೂಡಿಸಿ.
12k+12\geq 0
12 ಪಡೆದುಕೊಳ್ಳಲು 4 ಮತ್ತು 8 ಸೇರಿಸಿ.
12k\geq -12
ಎರಡೂ ಕಡೆಗಳಿಂದ 12 ಕಳೆಯಿರಿ. ಶೂನ್ಯದಿಂದ ಏನನ್ನಾದರೂ ಕಳೆದರೆ ಅದರ ಋಣಾತ್ಮಕವನ್ನು ನೀಡುತ್ತದೆ.
k\geq \frac{-12}{12}
12 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ. 12 ಎಂಬುದು ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಅಸಮಾನತೆಯ ದಿಕ್ಕು ಹಾಗೆಯೇ ಉಳಿದಿದೆ.
k\geq -1
-1 ಪಡೆಯಲು 12 ರಿಂದ -12 ವಿಭಾಗಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}