x ಪರಿಹರಿಸಿ
x=\frac{1-\sqrt{17}}{2}\approx -1.561552813
x=-1
x = \frac{\sqrt{17} + 1}{2} \approx 2.561552813
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4\left(1+\frac{1}{x}\right)x=xx^{2}+x\left(-1\right)
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
4\left(1+\frac{1}{x}\right)x=x^{3}+x\left(-1\right)
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 3 ಪಡೆಯಲು 1 ಮತ್ತು 2 ಸೇರಿಸಿ.
4\left(\frac{x}{x}+\frac{1}{x}\right)x=x^{3}+x\left(-1\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು 1 ಬಾರಿ ಗುಣಿಸಿ.
4\times \frac{x+1}{x}x=x^{3}+x\left(-1\right)
\frac{x}{x} ಮತ್ತು \frac{1}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಸೇರಿಸಿ.
\frac{4\left(x+1\right)}{x}x=x^{3}+x\left(-1\right)
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ 4\times \frac{x+1}{x} ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{4\left(x+1\right)x}{x}=x^{3}+x\left(-1\right)
ಏಕ ಭಿನ್ನಾಂಶವಾಗಿ \frac{4\left(x+1\right)}{x}x ಅನ್ನು ವ್ಯಕ್ತಪಡಿಸಿ.
\frac{\left(4x+4\right)x}{x}=x^{3}+x\left(-1\right)
x+1 ದಿಂದ 4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{4x^{2}+4x}{x}=x^{3}+x\left(-1\right)
x ದಿಂದ 4x+4 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
\frac{4x^{2}+4x}{x}-x^{3}=x\left(-1\right)
ಎರಡೂ ಕಡೆಗಳಿಂದ x^{3} ಕಳೆಯಿರಿ.
\frac{4x^{2}+4x}{x}-\frac{x^{3}x}{x}=x\left(-1\right)
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು x^{3} ಬಾರಿ ಗುಣಿಸಿ.
\frac{4x^{2}+4x-x^{3}x}{x}=x\left(-1\right)
\frac{4x^{2}+4x}{x} ಮತ್ತು \frac{x^{3}x}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{4x^{2}+4x-x^{4}}{x}=x\left(-1\right)
4x^{2}+4x-x^{3}x ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{4x^{2}+4x-x^{4}}{x}-x\left(-1\right)=0
ಎರಡೂ ಕಡೆಗಳಿಂದ x\left(-1\right) ಕಳೆಯಿರಿ.
\frac{4x^{2}+4x-x^{4}}{x}-\frac{x\left(-1\right)x}{x}=0
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{x}{x} ಅನ್ನು x\left(-1\right) ಬಾರಿ ಗುಣಿಸಿ.
\frac{4x^{2}+4x-x^{4}-x\left(-1\right)x}{x}=0
\frac{4x^{2}+4x-x^{4}}{x} ಮತ್ತು \frac{x\left(-1\right)x}{x} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{4x^{2}+4x-x^{4}+x^{2}}{x}=0
4x^{2}+4x-x^{4}-x\left(-1\right)x ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.
\frac{5x^{2}+4x-x^{4}}{x}=0
4x^{2}+4x-x^{4}+x^{2} ನಲ್ಲಿ ಅಂಶಗಳಂತೆ ಕೂಡಿಸಿ.
5x^{2}+4x-x^{4}=0
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. x ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
-t^{2}+5t+4=0
x^{2} ಗಾಗಿ t ಬದಲಿಸಿ.
t=\frac{-5±\sqrt{5^{2}-4\left(-1\right)\times 4}}{-2}
ax^{2}+bx+c=0 ರೂಪದ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ಈ ವರ್ಗೀಯ ಸೂತ್ರ ಬಳಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗೀಯ ಸೂತ್ರದಲ್ಲಿ a ಗಾಗಿ -1 ಅನ್ನು,b ಗೆ 5 ಅನ್ನು ಮತ್ತು c ಗೆ 4 ಅನ್ನು ಬದಲಿ ಇರಿಸಿ.
t=\frac{-5±\sqrt{41}}{-2}
ಲೆಕ್ಕಾಚಾರಗಳನ್ನು ಮಾಡಿ.
t=\frac{5-\sqrt{41}}{2} t=\frac{\sqrt{41}+5}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ ಮತ್ತು ± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-5±\sqrt{41}}{-2} ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಿ.
x=\frac{\sqrt{2\sqrt{41}+10}}{2} x=-\frac{\sqrt{2\sqrt{41}+10}}{2}
x=t^{2} ಕಾರಣದಿಂದ, ಧನಾತ್ಮಕ t ಗೆ x=±\sqrt{t} ಅನ್ನು ಮೌಲ್ಯಮಾಪನ ಮಾಡುವ ಮೂಲಕ ಪರಿಹಾರಗಳನ್ನು ಪಡೆದುಕೊಳ್ಳಲಾಗಿದೆ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}