ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
z ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

4z^{2}+160z=600
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
4z^{2}+160z-600=600-600
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 600 ಕಳೆಯಿರಿ.
4z^{2}+160z-600=0
600 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
z=\frac{-160±\sqrt{160^{2}-4\times 4\left(-600\right)}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ 160 ಮತ್ತು c ಗೆ -600 ಬದಲಿಸಿ.
z=\frac{-160±\sqrt{25600-4\times 4\left(-600\right)}}{2\times 4}
ವರ್ಗ 160.
z=\frac{-160±\sqrt{25600-16\left(-600\right)}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{-160±\sqrt{25600+9600}}{2\times 4}
-600 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{-160±\sqrt{35200}}{2\times 4}
9600 ಗೆ 25600 ಸೇರಿಸಿ.
z=\frac{-160±40\sqrt{22}}{2\times 4}
35200 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z=\frac{-160±40\sqrt{22}}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
z=\frac{40\sqrt{22}-160}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{-160±40\sqrt{22}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 40\sqrt{22} ಗೆ -160 ಸೇರಿಸಿ.
z=5\sqrt{22}-20
8 ದಿಂದ -160+40\sqrt{22} ಭಾಗಿಸಿ.
z=\frac{-40\sqrt{22}-160}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ z=\frac{-160±40\sqrt{22}}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -160 ದಿಂದ 40\sqrt{22} ಕಳೆಯಿರಿ.
z=-5\sqrt{22}-20
8 ದಿಂದ -160-40\sqrt{22} ಭಾಗಿಸಿ.
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4z^{2}+160z=600
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
\frac{4z^{2}+160z}{4}=\frac{600}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
z^{2}+\frac{160}{4}z=\frac{600}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
z^{2}+40z=\frac{600}{4}
4 ದಿಂದ 160 ಭಾಗಿಸಿ.
z^{2}+40z=150
4 ದಿಂದ 600 ಭಾಗಿಸಿ.
z^{2}+40z+20^{2}=150+20^{2}
20 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 40 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ 20 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
z^{2}+40z+400=150+400
ವರ್ಗ 20.
z^{2}+40z+400=550
400 ಗೆ 150 ಸೇರಿಸಿ.
\left(z+20\right)^{2}=550
ಅಪವರ್ತನ z^{2}+40z+400. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(z+20\right)^{2}}=\sqrt{550}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
z+20=5\sqrt{22} z+20=-5\sqrt{22}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
z=5\sqrt{22}-20 z=-5\sqrt{22}-20
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 20 ಕಳೆಯಿರಿ.