x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
x=\frac{\sqrt{17}i}{2}+2\approx 2+2.061552813i
x=-\frac{\sqrt{17}i}{2}+2\approx 2-2.061552813i
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
4x^{2}-16x+33=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-\left(-16\right)±\sqrt{\left(-16\right)^{2}-4\times 4\times 33}}{2\times 4}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 4, b ಗೆ -16 ಮತ್ತು c ಗೆ 33 ಬದಲಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{256-4\times 4\times 33}}{2\times 4}
ವರ್ಗ -16.
x=\frac{-\left(-16\right)±\sqrt{256-16\times 33}}{2\times 4}
4 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{256-528}}{2\times 4}
33 ಅನ್ನು -16 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-16\right)±\sqrt{-272}}{2\times 4}
-528 ಗೆ 256 ಸೇರಿಸಿ.
x=\frac{-\left(-16\right)±4\sqrt{17}i}{2\times 4}
-272 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{16±4\sqrt{17}i}{2\times 4}
-16 ನ ವಿಲೋಮವು 16 ಆಗಿದೆ.
x=\frac{16±4\sqrt{17}i}{8}
4 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{16+4\sqrt{17}i}{8}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{16±4\sqrt{17}i}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4i\sqrt{17} ಗೆ 16 ಸೇರಿಸಿ.
x=\frac{\sqrt{17}i}{2}+2
8 ದಿಂದ 16+4i\sqrt{17} ಭಾಗಿಸಿ.
x=\frac{-4\sqrt{17}i+16}{8}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{16±4\sqrt{17}i}{8} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 16 ದಿಂದ 4i\sqrt{17} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{17}i}{2}+2
8 ದಿಂದ 16-4i\sqrt{17} ಭಾಗಿಸಿ.
x=\frac{\sqrt{17}i}{2}+2 x=-\frac{\sqrt{17}i}{2}+2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
4x^{2}-16x+33=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
4x^{2}-16x+33-33=-33
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 33 ಕಳೆಯಿರಿ.
4x^{2}-16x=-33
33 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{4x^{2}-16x}{4}=-\frac{33}{4}
4 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{16}{4}\right)x=-\frac{33}{4}
4 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 4 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-4x=-\frac{33}{4}
4 ದಿಂದ -16 ಭಾಗಿಸಿ.
x^{2}-4x+\left(-2\right)^{2}=-\frac{33}{4}+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-4x+4=-\frac{33}{4}+4
ವರ್ಗ -2.
x^{2}-4x+4=-\frac{17}{4}
4 ಗೆ -\frac{33}{4} ಸೇರಿಸಿ.
\left(x-2\right)^{2}=-\frac{17}{4}
ಅಪವರ್ತನ x^{2}-4x+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-2\right)^{2}}=\sqrt{-\frac{17}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-2=\frac{\sqrt{17}i}{2} x-2=-\frac{\sqrt{17}i}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{17}i}{2}+2 x=-\frac{\sqrt{17}i}{2}+2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}