ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 5x, 5,x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
10 ಪಡೆದುಕೊಳ್ಳಲು \frac{5}{2} ಮತ್ತು 4 ಗುಣಿಸಿ.
10x^{2}-4x=5\times 3
-4 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು -\frac{4}{5} ಗುಣಿಸಿ.
10x^{2}-4x=15
15 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 3 ಗುಣಿಸಿ.
10x^{2}-4x-15=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 15 ಕಳೆಯಿರಿ.
x=\frac{-\left(-4\right)±\sqrt{\left(-4\right)^{2}-4\times 10\left(-15\right)}}{2\times 10}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 10, b ಗೆ -4 ಮತ್ತು c ಗೆ -15 ಬದಲಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16-4\times 10\left(-15\right)}}{2\times 10}
ವರ್ಗ -4.
x=\frac{-\left(-4\right)±\sqrt{16-40\left(-15\right)}}{2\times 10}
10 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{16+600}}{2\times 10}
-15 ಅನ್ನು -40 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-4\right)±\sqrt{616}}{2\times 10}
600 ಗೆ 16 ಸೇರಿಸಿ.
x=\frac{-\left(-4\right)±2\sqrt{154}}{2\times 10}
616 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{4±2\sqrt{154}}{2\times 10}
-4 ನ ವಿಲೋಮವು 4 ಆಗಿದೆ.
x=\frac{4±2\sqrt{154}}{20}
10 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{2\sqrt{154}+4}{20}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{4±2\sqrt{154}}{20} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{154} ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{\sqrt{154}}{10}+\frac{1}{5}
20 ದಿಂದ 4+2\sqrt{154} ಭಾಗಿಸಿ.
x=\frac{4-2\sqrt{154}}{20}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{4±2\sqrt{154}}{20} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 4 ದಿಂದ 2\sqrt{154} ಕಳೆಯಿರಿ.
x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
20 ದಿಂದ 4-2\sqrt{154} ಭಾಗಿಸಿ.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\frac{5}{2}x^{2}\times 4+5x\left(-\frac{4}{5}\right)=5\times 3
ಶೂನ್ಯದಿಂದ ಭಾಗಿಸುವಿಕೆಯನ್ನು ವ್ಯಾಖ್ಯಾನಿಸದೇ ಇರುವುದರಿಂದ x ವೇರಿಯೇಬಲ್ 0 ಗೆ ಸಮನಾಗಿರಬಾರದು. ಸಮೀಕರಣದ ಎರಡೂ ಬದಿಗಳನ್ನು 5x, 5,x ರ ಕನಿಷ್ಠ ಸಾಮಾನ್ಯ ಛೇದದಿಂದ ಗುಣಾಕಾರ ಮಾಡಿ.
10x^{2}+5x\left(-\frac{4}{5}\right)=5\times 3
10 ಪಡೆದುಕೊಳ್ಳಲು \frac{5}{2} ಮತ್ತು 4 ಗುಣಿಸಿ.
10x^{2}-4x=5\times 3
-4 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು -\frac{4}{5} ಗುಣಿಸಿ.
10x^{2}-4x=15
15 ಪಡೆದುಕೊಳ್ಳಲು 5 ಮತ್ತು 3 ಗುಣಿಸಿ.
\frac{10x^{2}-4x}{10}=\frac{15}{10}
10 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{4}{10}\right)x=\frac{15}{10}
10 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 10 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{2}{5}x=\frac{15}{10}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-4}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{2}{5}x=\frac{3}{2}
5 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{15}{10} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{2}{5}x+\left(-\frac{1}{5}\right)^{2}=\frac{3}{2}+\left(-\frac{1}{5}\right)^{2}
-\frac{1}{5} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{2}{5} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{1}{5} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{3}{2}+\frac{1}{25}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{1}{5} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{2}{5}x+\frac{1}{25}=\frac{77}{50}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{1}{25} ಗೆ \frac{3}{2} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{1}{5}\right)^{2}=\frac{77}{50}
ಅಪವರ್ತನ x^{2}-\frac{2}{5}x+\frac{1}{25}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{1}{5}\right)^{2}}=\sqrt{\frac{77}{50}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{1}{5}=\frac{\sqrt{154}}{10} x-\frac{1}{5}=-\frac{\sqrt{154}}{10}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{154}}{10}+\frac{1}{5} x=-\frac{\sqrt{154}}{10}+\frac{1}{5}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{1}{5} ಸೇರಿಸಿ.