ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
ಮೌಲ್ಯಮಾಪನ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right)}
\frac{\sqrt{2}}{1-\sqrt{5}} ಅನ್ನು ಗುಣಿಸುವ ಮೂಲಕ ಛೇದವನ್ನು ಮತ್ತು 1+\sqrt{5} ಮೂಲಕ ಛೇದ ಮತ್ತು ಅಂಶವನ್ನು ತರ್ಕಬದ್ಧವಾಗಿಸಿ.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{1^{2}-\left(\sqrt{5}\right)^{2}}
\left(1-\sqrt{5}\right)\left(1+\sqrt{5}\right) ಪರಿಗಣಿಸಿ. ನಿಯಮವನ್ನು ಬಳಸಿಕೊಂಡು ಗುಣಾಕಾರವನ್ನು ವರ್ಗಗಳ ವ್ಯತ್ಯಾಸವಾಗಿ ಪರಿವರ್ತಿಸಬಹುದು: \left(a-b\right)\left(a+b\right)=a^{2}-b^{2}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{1-5}
ವರ್ಗ 1. ವರ್ಗ \sqrt{5}.
3-\frac{\sqrt{2}\left(1+\sqrt{5}\right)}{-4}
-4 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 5 ಕಳೆಯಿರಿ.
3-\frac{\sqrt{2}+\sqrt{2}\sqrt{5}}{-4}
1+\sqrt{5} ದಿಂದ \sqrt{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3-\frac{\sqrt{2}+\sqrt{10}}{-4}
\sqrt{2} ಮತ್ತು \sqrt{5} ಅನ್ನು ಗುಣಿಸಲು, ವರ್ಗಮೂಲದ ಅಡಿಯಲ್ಲಿರುವ ಸಂಖ್ಯೆಯನ್ನು ಗುಣಿಸಿ.
3-\frac{-\sqrt{2}-\sqrt{10}}{4}
ಅಂಶ ಮತ್ತು ಛೇದಗಳೆರಡನ್ನೂ -1 ರಿಂದ ಗುಣಿಸಿ.
\frac{3\times 4}{4}-\frac{-\sqrt{2}-\sqrt{10}}{4}
ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು ಸೇರಿಸಲು ಅಥವಾ ಕಳೆಯಲು, ಅವುಗಳ ಅಪವರ್ತ್ಯಗಳನ್ನು ಒಂದೇ ಆಗಿರುವಂತೆ ಮಾಡಲು ವಿಸ್ತರಿಸಿ. \frac{4}{4} ಅನ್ನು 3 ಬಾರಿ ಗುಣಿಸಿ.
\frac{3\times 4-\left(-\sqrt{2}-\sqrt{10}\right)}{4}
\frac{3\times 4}{4} ಮತ್ತು \frac{-\sqrt{2}-\sqrt{10}}{4} ಒಂದೇ ಛೇದವನ್ನು ಹೊಂದಿರುವುದರಿಂದ, ಅವುಗಳ ಗಣಕಗಳನ್ನು ಕಳೆಯುವ ಮೂಲಕ ಅವುಗಳನ್ನು ಕಳೆಯಿರಿ.
\frac{12+\sqrt{2}+\sqrt{10}}{4}
3\times 4-\left(-\sqrt{2}-\sqrt{10}\right) ನಲ್ಲಿ ಗುಣಾಕಾರಗಳನ್ನು ಮಾಡಿ.