ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
x ಪರಿಹರಿಸಿ
Tick mark Image
A ಪರಿಹರಿಸಿ (ಸಂಕೀರ್ಣ ಪರಿಹಾರ)
Tick mark Image
A ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3x\left(A-3i\right)\left(A+3i\right)-AA^{3}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
\left(A-3i\right)\left(A+3i\right) ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3x\left(A-3i\right)\left(A+3i\right)-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 4 ಪಡೆಯಲು 1 ಮತ್ತು 3 ಸೇರಿಸಿ.
\left(3xA-9ix\right)\left(A+3i\right)-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
A-3i ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3xA^{2}+27x-A^{4}=\left(A-3i\right)\left(A+3i\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
A+3i ರಿಂದು 3xA-9ix ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
3xA^{2}+27x-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A-3i\right)\left(A+3i\right)
A+3i ರಿಂದು A-3i ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{2}\left(A-3i\right)\left(A+3i\right)
9 ದಿಂದ A^{2}+9 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3xA^{2}+27x-A^{4}=9A^{2}+81+\left(-A^{3}+3iA^{2}\right)\left(A+3i\right)
A-3i ದಿಂದ -A^{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{4}-9A^{2}
A+3i ರಿಂದು -A^{3}+3iA^{2} ಗುಣಿಸಲು ವಿತರಣೆ ಮಾಡಬಹುದಾದ ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ ಮತ್ತು ನಿಯಮಗಳ ಪ್ರಕಾರ ಒಗ್ಗೂಡಿಸಿ.
3xA^{2}+27x-A^{4}=81-A^{4}
0 ಪಡೆದುಕೊಳ್ಳಲು 9A^{2} ಮತ್ತು -9A^{2} ಕೂಡಿಸಿ.
3xA^{2}+27x=81-A^{4}+A^{4}
ಎರಡೂ ಬದಿಗಳಿಗೆ A^{4} ಸೇರಿಸಿ.
3xA^{2}+27x=81
0 ಪಡೆದುಕೊಳ್ಳಲು -A^{4} ಮತ್ತು A^{4} ಕೂಡಿಸಿ.
\left(3A^{2}+27\right)x=81
x ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81}{3A^{2}+27}
3A^{2}+27 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{81}{3A^{2}+27}
3A^{2}+27 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3A^{2}+27 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x=\frac{27}{A^{2}+9}
3A^{2}+27 ದಿಂದ 81 ಭಾಗಿಸಿ.
3x\left(A^{2}+9\right)-AA^{3}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
A^{2}+9 ಮೂಲಕ ಸಮೀಕರಣದ ಎರಡು ಕಡೆಗಳಲ್ಲಿ ಗುಣಿಸಿ.
3x\left(A^{2}+9\right)-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
ಒಂದೇ ಮೂಲ ಸಂಖ್ಯೆಯಿಂದ ಪರಿಮಾಣಗಳನ್ನು ಗುಣಾಕಾರ ಮಾಡಲು, ಅವುಗಳ ಘಾತಗಳನ್ನು ಸೇರಿಸಿ. 4 ಪಡೆಯಲು 1 ಮತ್ತು 3 ಸೇರಿಸಿ.
3xA^{2}+27x-A^{4}=\left(A^{2}+9\right)\times 9-A^{2}\left(A^{2}+9\right)
A^{2}+9 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{2}\left(A^{2}+9\right)
9 ದಿಂದ A^{2}+9 ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3xA^{2}+27x-A^{4}=9A^{2}+81-A^{4}-9A^{2}
A^{2}+9 ದಿಂದ -A^{2} ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3xA^{2}+27x-A^{4}=81-A^{4}
0 ಪಡೆದುಕೊಳ್ಳಲು 9A^{2} ಮತ್ತು -9A^{2} ಕೂಡಿಸಿ.
3xA^{2}+27x=81-A^{4}+A^{4}
ಎರಡೂ ಬದಿಗಳಿಗೆ A^{4} ಸೇರಿಸಿ.
3xA^{2}+27x=81
0 ಪಡೆದುಕೊಳ್ಳಲು -A^{4} ಮತ್ತು A^{4} ಕೂಡಿಸಿ.
\left(3A^{2}+27\right)x=81
x ಹೊಂದಿರುವ ಎಲ್ಲಾ ಪದಗಳನ್ನು ಕೂಡಿಸಿ.
\frac{\left(3A^{2}+27\right)x}{3A^{2}+27}=\frac{81}{3A^{2}+27}
3A^{2}+27 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x=\frac{81}{3A^{2}+27}
3A^{2}+27 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3A^{2}+27 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x=\frac{27}{A^{2}+9}
3A^{2}+27 ದಿಂದ 81 ಭಾಗಿಸಿ.