ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3x^{2}-12x=4x+x-2
x-4 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x^{2}-12x=5x-2
5x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು x ಕೂಡಿಸಿ.
3x^{2}-12x-5x=-2
ಎರಡೂ ಕಡೆಗಳಿಂದ 5x ಕಳೆಯಿರಿ.
3x^{2}-17x=-2
-17x ಪಡೆದುಕೊಳ್ಳಲು -12x ಮತ್ತು -5x ಕೂಡಿಸಿ.
3x^{2}-17x+2=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 2 ಸೇರಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{\left(-17\right)^{2}-4\times 3\times 2}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ -17 ಮತ್ತು c ಗೆ 2 ಬದಲಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{289-4\times 3\times 2}}{2\times 3}
ವರ್ಗ -17.
x=\frac{-\left(-17\right)±\sqrt{289-12\times 2}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{289-24}}{2\times 3}
2 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-\left(-17\right)±\sqrt{265}}{2\times 3}
-24 ಗೆ 289 ಸೇರಿಸಿ.
x=\frac{17±\sqrt{265}}{2\times 3}
-17 ನ ವಿಲೋಮವು 17 ಆಗಿದೆ.
x=\frac{17±\sqrt{265}}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{\sqrt{265}+17}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{17±\sqrt{265}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{265} ಗೆ 17 ಸೇರಿಸಿ.
x=\frac{17-\sqrt{265}}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{17±\sqrt{265}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 17 ದಿಂದ \sqrt{265} ಕಳೆಯಿರಿ.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x^{2}-12x=4x+x-2
x-4 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
3x^{2}-12x=5x-2
5x ಪಡೆದುಕೊಳ್ಳಲು 4x ಮತ್ತು x ಕೂಡಿಸಿ.
3x^{2}-12x-5x=-2
ಎರಡೂ ಕಡೆಗಳಿಂದ 5x ಕಳೆಯಿರಿ.
3x^{2}-17x=-2
-17x ಪಡೆದುಕೊಳ್ಳಲು -12x ಮತ್ತು -5x ಕೂಡಿಸಿ.
\frac{3x^{2}-17x}{3}=-\frac{2}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}-\frac{17}{3}x=-\frac{2}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{17}{3}x+\left(-\frac{17}{6}\right)^{2}=-\frac{2}{3}+\left(-\frac{17}{6}\right)^{2}
-\frac{17}{6} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{17}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{17}{6} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{17}{3}x+\frac{289}{36}=-\frac{2}{3}+\frac{289}{36}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{17}{6} ವರ್ಗಗೊಳಿಸಿ.
x^{2}-\frac{17}{3}x+\frac{289}{36}=\frac{265}{36}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{289}{36} ಗೆ -\frac{2}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x-\frac{17}{6}\right)^{2}=\frac{265}{36}
ಅಪವರ್ತನ x^{2}-\frac{17}{3}x+\frac{289}{36}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{17}{6}\right)^{2}}=\sqrt{\frac{265}{36}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{17}{6}=\frac{\sqrt{265}}{6} x-\frac{17}{6}=-\frac{\sqrt{265}}{6}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{265}+17}{6} x=\frac{17-\sqrt{265}}{6}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{17}{6} ಸೇರಿಸಿ.