ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

6x^{2}-15x-4x\left(5-2x\right)=0
2x-5 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6x^{2}-15x-20x+8x^{2}=0
5-2x ದಿಂದ -4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6x^{2}-35x+8x^{2}=0
-35x ಪಡೆದುಕೊಳ್ಳಲು -15x ಮತ್ತು -20x ಕೂಡಿಸಿ.
14x^{2}-35x=0
14x^{2} ಪಡೆದುಕೊಳ್ಳಲು 6x^{2} ಮತ್ತು 8x^{2} ಕೂಡಿಸಿ.
x\left(14x-35\right)=0
x ಅಪವರ್ತನಗೊಳಿಸಿ.
x=0 x=\frac{5}{2}
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x=0 ಮತ್ತು 14x-35=0 ಪರಿಹರಿಸಿ.
6x^{2}-15x-4x\left(5-2x\right)=0
2x-5 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6x^{2}-15x-20x+8x^{2}=0
5-2x ದಿಂದ -4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6x^{2}-35x+8x^{2}=0
-35x ಪಡೆದುಕೊಳ್ಳಲು -15x ಮತ್ತು -20x ಕೂಡಿಸಿ.
14x^{2}-35x=0
14x^{2} ಪಡೆದುಕೊಳ್ಳಲು 6x^{2} ಮತ್ತು 8x^{2} ಕೂಡಿಸಿ.
x=\frac{-\left(-35\right)±\sqrt{\left(-35\right)^{2}}}{2\times 14}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 14, b ಗೆ -35 ಮತ್ತು c ಗೆ 0 ಬದಲಿಸಿ.
x=\frac{-\left(-35\right)±35}{2\times 14}
\left(-35\right)^{2} ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{35±35}{2\times 14}
-35 ನ ವಿಲೋಮವು 35 ಆಗಿದೆ.
x=\frac{35±35}{28}
14 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{70}{28}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{35±35}{28} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 35 ಗೆ 35 ಸೇರಿಸಿ.
x=\frac{5}{2}
14 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{70}{28} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x=\frac{0}{28}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{35±35}{28} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 35 ದಿಂದ 35 ಕಳೆಯಿರಿ.
x=0
28 ದಿಂದ 0 ಭಾಗಿಸಿ.
x=\frac{5}{2} x=0
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
6x^{2}-15x-4x\left(5-2x\right)=0
2x-5 ದಿಂದ 3x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6x^{2}-15x-20x+8x^{2}=0
5-2x ದಿಂದ -4x ಗುಣಿಸಲು ವಿಭಾಜಕ ಗುಣವನ್ನು ಬಳಸಿ.
6x^{2}-35x+8x^{2}=0
-35x ಪಡೆದುಕೊಳ್ಳಲು -15x ಮತ್ತು -20x ಕೂಡಿಸಿ.
14x^{2}-35x=0
14x^{2} ಪಡೆದುಕೊಳ್ಳಲು 6x^{2} ಮತ್ತು 8x^{2} ಕೂಡಿಸಿ.
\frac{14x^{2}-35x}{14}=\frac{0}{14}
14 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\left(-\frac{35}{14}\right)x=\frac{0}{14}
14 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 14 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}-\frac{5}{2}x=\frac{0}{14}
7 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-35}{14} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
x^{2}-\frac{5}{2}x=0
14 ದಿಂದ 0 ಭಾಗಿಸಿ.
x^{2}-\frac{5}{2}x+\left(-\frac{5}{4}\right)^{2}=\left(-\frac{5}{4}\right)^{2}
-\frac{5}{4} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -\frac{5}{2} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -\frac{5}{4} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}-\frac{5}{2}x+\frac{25}{16}=\frac{25}{16}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ -\frac{5}{4} ವರ್ಗಗೊಳಿಸಿ.
\left(x-\frac{5}{4}\right)^{2}=\frac{25}{16}
ಅಪವರ್ತನ x^{2}-\frac{5}{2}x+\frac{25}{16}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x-\frac{5}{4}\right)^{2}}=\sqrt{\frac{25}{16}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x-\frac{5}{4}=\frac{5}{4} x-\frac{5}{4}=-\frac{5}{4}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{5}{2} x=0
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ \frac{5}{4} ಸೇರಿಸಿ.