ಅಪವರ್ತನ
\left(x-3\right)\left(x+1\right)\left(3x+1\right)
ಮೌಲ್ಯಮಾಪನ
\left(x-3\right)\left(x+1\right)\left(3x+1\right)
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
\left(x+1\right)\left(3x^{2}-8x-3\right)
ಭಾಗಲಬ್ಧ ವರ್ಗಮೂಲ ಪ್ರಮೇಯದ ಮೂಲಕ, ಬಹುಪದೋಕ್ತಿಯ ತರ್ಕಬದ್ಧ ರೂಟ್ಗಳು \frac{p}{q} ಸವರೂಪದಲ್ಲಿವೆ, ಇಲ್ಲಿ p ಎನ್ನುವುದು -3 ಸ್ಥಿರ ಪದವನ್ನು ವಿಭಜಿಸುತ್ತದೆ ಮತ್ತು q ಎನ್ನುವುದು ಪ್ರಧಾನ ಗುಣಾಂಕ 3 ಅನ್ನು ವಿಭಜಿಸುತ್ತದೆ. ಅಂತಹ ಒಂದು ವರ್ಗಮೂಲ -1 ಆಗಿದೆ. ಬಹುಪದೋಕ್ತಿಯನ್ನು x+1 ನಿಂದ ಭಾಗಿಸುವ ಮೂಲಕ ಅದನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=-8 ab=3\left(-3\right)=-9
3x^{2}-8x-3 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು 3x^{2}+ax+bx-3 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,-9 3,-3
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -9 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1-9=-8 3-3=0
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-9 b=1
ಪರಿಹಾರವು -8 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(3x^{2}-9x\right)+\left(x-3\right)
\left(3x^{2}-9x\right)+\left(x-3\right) ನ ಹಾಗೆ 3x^{2}-8x-3 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
3x\left(x-3\right)+x-3
3x^{2}-9x ರಲ್ಲಿ 3x ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-3\right)\left(3x+1\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-3\right)\left(x+1\right)\left(3x+1\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}