ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3x^{2}+15x-12=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್‌ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-15±\sqrt{15^{2}-4\times 3\left(-12\right)}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ 15 ಮತ್ತು c ಗೆ -12 ಬದಲಿಸಿ.
x=\frac{-15±\sqrt{225-4\times 3\left(-12\right)}}{2\times 3}
ವರ್ಗ 15.
x=\frac{-15±\sqrt{225-12\left(-12\right)}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-15±\sqrt{225+144}}{2\times 3}
-12 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-15±\sqrt{369}}{2\times 3}
144 ಗೆ 225 ಸೇರಿಸಿ.
x=\frac{-15±3\sqrt{41}}{2\times 3}
369 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-15±3\sqrt{41}}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{3\sqrt{41}-15}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-15±3\sqrt{41}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 3\sqrt{41} ಗೆ -15 ಸೇರಿಸಿ.
x=\frac{\sqrt{41}-5}{2}
6 ದಿಂದ -15+3\sqrt{41} ಭಾಗಿಸಿ.
x=\frac{-3\sqrt{41}-15}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-15±3\sqrt{41}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -15 ದಿಂದ 3\sqrt{41} ಕಳೆಯಿರಿ.
x=\frac{-\sqrt{41}-5}{2}
6 ದಿಂದ -15-3\sqrt{41} ಭಾಗಿಸಿ.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x^{2}+15x-12=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್‌ನಲ್ಲಿ ಇರಬೇಕು.
3x^{2}+15x-12-\left(-12\right)=-\left(-12\right)
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 12 ಸೇರಿಸಿ.
3x^{2}+15x=-\left(-12\right)
-12 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
3x^{2}+15x=12
0 ದಿಂದ -12 ಕಳೆಯಿರಿ.
\frac{3x^{2}+15x}{3}=\frac{12}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{15}{3}x=\frac{12}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+5x=\frac{12}{3}
3 ದಿಂದ 15 ಭಾಗಿಸಿ.
x^{2}+5x=4
3 ದಿಂದ 12 ಭಾಗಿಸಿ.
x^{2}+5x+\left(\frac{5}{2}\right)^{2}=4+\left(\frac{5}{2}\right)^{2}
\frac{5}{2} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ 5 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{5}{2} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+5x+\frac{25}{4}=4+\frac{25}{4}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{5}{2} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+5x+\frac{25}{4}=\frac{41}{4}
\frac{25}{4} ಗೆ 4 ಸೇರಿಸಿ.
\left(x+\frac{5}{2}\right)^{2}=\frac{41}{4}
ಅಪವರ್ತನ x^{2}+5x+\frac{25}{4}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{5}{2}\right)^{2}}=\sqrt{\frac{41}{4}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{5}{2}=\frac{\sqrt{41}}{2} x+\frac{5}{2}=-\frac{\sqrt{41}}{2}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{\sqrt{41}-5}{2} x=\frac{-\sqrt{41}-5}{2}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{5}{2} ಕಳೆಯಿರಿ.