w ಪರಿಹರಿಸಿ
w=\frac{\sqrt{15}}{3}+2\approx 3.290994449
w=-\frac{\sqrt{15}}{3}+2\approx 0.709005551
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3w^{2}-12w+7=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
w=\frac{-\left(-12\right)±\sqrt{\left(-12\right)^{2}-4\times 3\times 7}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ -12 ಮತ್ತು c ಗೆ 7 ಬದಲಿಸಿ.
w=\frac{-\left(-12\right)±\sqrt{144-4\times 3\times 7}}{2\times 3}
ವರ್ಗ -12.
w=\frac{-\left(-12\right)±\sqrt{144-12\times 7}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
w=\frac{-\left(-12\right)±\sqrt{144-84}}{2\times 3}
7 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
w=\frac{-\left(-12\right)±\sqrt{60}}{2\times 3}
-84 ಗೆ 144 ಸೇರಿಸಿ.
w=\frac{-\left(-12\right)±2\sqrt{15}}{2\times 3}
60 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
w=\frac{12±2\sqrt{15}}{2\times 3}
-12 ನ ವಿಲೋಮವು 12 ಆಗಿದೆ.
w=\frac{12±2\sqrt{15}}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
w=\frac{2\sqrt{15}+12}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ w=\frac{12±2\sqrt{15}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2\sqrt{15} ಗೆ 12 ಸೇರಿಸಿ.
w=\frac{\sqrt{15}}{3}+2
6 ದಿಂದ 12+2\sqrt{15} ಭಾಗಿಸಿ.
w=\frac{12-2\sqrt{15}}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ w=\frac{12±2\sqrt{15}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 12 ದಿಂದ 2\sqrt{15} ಕಳೆಯಿರಿ.
w=-\frac{\sqrt{15}}{3}+2
6 ದಿಂದ 12-2\sqrt{15} ಭಾಗಿಸಿ.
w=\frac{\sqrt{15}}{3}+2 w=-\frac{\sqrt{15}}{3}+2
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3w^{2}-12w+7=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
3w^{2}-12w+7-7=-7
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 7 ಕಳೆಯಿರಿ.
3w^{2}-12w=-7
7 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{3w^{2}-12w}{3}=-\frac{7}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
w^{2}+\left(-\frac{12}{3}\right)w=-\frac{7}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
w^{2}-4w=-\frac{7}{3}
3 ದಿಂದ -12 ಭಾಗಿಸಿ.
w^{2}-4w+\left(-2\right)^{2}=-\frac{7}{3}+\left(-2\right)^{2}
-2 ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ -4 ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ -2 ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
w^{2}-4w+4=-\frac{7}{3}+4
ವರ್ಗ -2.
w^{2}-4w+4=\frac{5}{3}
4 ಗೆ -\frac{7}{3} ಸೇರಿಸಿ.
\left(w-2\right)^{2}=\frac{5}{3}
ಅಪವರ್ತನ w^{2}-4w+4. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(w-2\right)^{2}}=\sqrt{\frac{5}{3}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
w-2=\frac{\sqrt{15}}{3} w-2=-\frac{\sqrt{15}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
w=\frac{\sqrt{15}}{3}+2 w=-\frac{\sqrt{15}}{3}+2
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ 2 ಸೇರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}