ಅಪವರ್ತನ
-3\left(t-\left(-\frac{\sqrt{21}}{6}+\frac{1}{2}\right)\right)\left(t-\left(\frac{\sqrt{21}}{6}+\frac{1}{2}\right)\right)
ಮೌಲ್ಯಮಾಪನ
1+3t-3t^{2}
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
factor(3t+1-3t^{2})
1 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 2 ಕಳೆಯಿರಿ.
-3t^{2}+3t+1=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
t=\frac{-3±\sqrt{3^{2}-4\left(-3\right)}}{2\left(-3\right)}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
t=\frac{-3±\sqrt{9-4\left(-3\right)}}{2\left(-3\right)}
ವರ್ಗ 3.
t=\frac{-3±\sqrt{9+12}}{2\left(-3\right)}
-3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{-3±\sqrt{21}}{2\left(-3\right)}
12 ಗೆ 9 ಸೇರಿಸಿ.
t=\frac{-3±\sqrt{21}}{-6}
-3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
t=\frac{\sqrt{21}-3}{-6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-3±\sqrt{21}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. \sqrt{21} ಗೆ -3 ಸೇರಿಸಿ.
t=-\frac{\sqrt{21}}{6}+\frac{1}{2}
-6 ದಿಂದ -3+\sqrt{21} ಭಾಗಿಸಿ.
t=\frac{-\sqrt{21}-3}{-6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ t=\frac{-3±\sqrt{21}}{-6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -3 ದಿಂದ \sqrt{21} ಕಳೆಯಿರಿ.
t=\frac{\sqrt{21}}{6}+\frac{1}{2}
-6 ದಿಂದ -3-\sqrt{21} ಭಾಗಿಸಿ.
-3t^{2}+3t+1=-3\left(t-\left(-\frac{\sqrt{21}}{6}+\frac{1}{2}\right)\right)\left(t-\left(\frac{\sqrt{21}}{6}+\frac{1}{2}\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ \frac{1}{2}-\frac{\sqrt{21}}{6} ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ \frac{1}{2}+\frac{\sqrt{21}}{6} ನ್ನು ಬಳಸಿ.
3t+1-3t^{2}
1 ಪಡೆದುಕೊಳ್ಳಲು 3 ದಿಂದ 2 ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}