ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
n ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3n^{2}=11
11 ಪಡೆದುಕೊಳ್ಳಲು 7 ಮತ್ತು 4 ಸೇರಿಸಿ.
n^{2}=\frac{11}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
n=\frac{\sqrt{33}}{3} n=-\frac{\sqrt{33}}{3}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
3n^{2}=11
11 ಪಡೆದುಕೊಳ್ಳಲು 7 ಮತ್ತು 4 ಸೇರಿಸಿ.
3n^{2}-11=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 11 ಕಳೆಯಿರಿ.
n=\frac{0±\sqrt{0^{2}-4\times 3\left(-11\right)}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ 0 ಮತ್ತು c ಗೆ -11 ಬದಲಿಸಿ.
n=\frac{0±\sqrt{-4\times 3\left(-11\right)}}{2\times 3}
ವರ್ಗ 0.
n=\frac{0±\sqrt{-12\left(-11\right)}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{0±\sqrt{132}}{2\times 3}
-11 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{0±2\sqrt{33}}{2\times 3}
132 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
n=\frac{0±2\sqrt{33}}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
n=\frac{\sqrt{33}}{3}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{0±2\sqrt{33}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
n=-\frac{\sqrt{33}}{3}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ n=\frac{0±2\sqrt{33}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
n=\frac{\sqrt{33}}{3} n=-\frac{\sqrt{33}}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.