ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
m ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

3m^{2}+16m=-21
ಎರಡೂ ಬದಿಗಳಿಗೆ 16m ಸೇರಿಸಿ.
3m^{2}+16m+21=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 21 ಸೇರಿಸಿ.
a+b=16 ab=3\times 21=63
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು 3m^{2}+am+bm+21 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
1,63 3,21 7,9
ab ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಒಂದೇ ಚಿಹ್ನೆಯನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ಎರಡೂ ಧನಾತ್ಮಕವಾಗಿವೆ. ಉತ್ಪನ್ನ 63 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
1+63=64 3+21=24 7+9=16
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=7 b=9
ಪರಿಹಾರವು 16 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(3m^{2}+7m\right)+\left(9m+21\right)
\left(3m^{2}+7m\right)+\left(9m+21\right) ನ ಹಾಗೆ 3m^{2}+16m+21 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
m\left(3m+7\right)+3\left(3m+7\right)
ಮೊದಲನೆಯದರಲ್ಲಿ m ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 3 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(3m+7\right)\left(m+3\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ 3m+7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
m=-\frac{7}{3} m=-3
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, 3m+7=0 ಮತ್ತು m+3=0 ಪರಿಹರಿಸಿ.
3m^{2}+16m=-21
ಎರಡೂ ಬದಿಗಳಿಗೆ 16m ಸೇರಿಸಿ.
3m^{2}+16m+21=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 21 ಸೇರಿಸಿ.
m=\frac{-16±\sqrt{16^{2}-4\times 3\times 21}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ 16 ಮತ್ತು c ಗೆ 21 ಬದಲಿಸಿ.
m=\frac{-16±\sqrt{256-4\times 3\times 21}}{2\times 3}
ವರ್ಗ 16.
m=\frac{-16±\sqrt{256-12\times 21}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{-16±\sqrt{256-252}}{2\times 3}
21 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{-16±\sqrt{4}}{2\times 3}
-252 ಗೆ 256 ಸೇರಿಸಿ.
m=\frac{-16±2}{2\times 3}
4 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m=\frac{-16±2}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
m=-\frac{14}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{-16±2}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 2 ಗೆ -16 ಸೇರಿಸಿ.
m=-\frac{7}{3}
2 ಅನ್ನು ಮರುಪಡೆಯುವ ಮತ್ತು ರದ್ದುಗೊಳಿಸುವ ಮೂಲಕ \frac{-14}{6} ಭಿನ್ನಾಂಕವನ್ನು ಅತೀ ಕಡಿಮೆ ಪದಗಳಿಗೆ ತಗ್ಗಿಸಿ.
m=-\frac{18}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{-16±2}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -16 ದಿಂದ 2 ಕಳೆಯಿರಿ.
m=-3
6 ದಿಂದ -18 ಭಾಗಿಸಿ.
m=-\frac{7}{3} m=-3
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3m^{2}+16m=-21
ಎರಡೂ ಬದಿಗಳಿಗೆ 16m ಸೇರಿಸಿ.
\frac{3m^{2}+16m}{3}=-\frac{21}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m^{2}+\frac{16}{3}m=-\frac{21}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
m^{2}+\frac{16}{3}m=-7
3 ದಿಂದ -21 ಭಾಗಿಸಿ.
m^{2}+\frac{16}{3}m+\left(\frac{8}{3}\right)^{2}=-7+\left(\frac{8}{3}\right)^{2}
\frac{8}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{16}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{8}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
m^{2}+\frac{16}{3}m+\frac{64}{9}=-7+\frac{64}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{8}{3} ವರ್ಗಗೊಳಿಸಿ.
m^{2}+\frac{16}{3}m+\frac{64}{9}=\frac{1}{9}
\frac{64}{9} ಗೆ -7 ಸೇರಿಸಿ.
\left(m+\frac{8}{3}\right)^{2}=\frac{1}{9}
ಅಪವರ್ತನ m^{2}+\frac{16}{3}m+\frac{64}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(m+\frac{8}{3}\right)^{2}}=\sqrt{\frac{1}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m+\frac{8}{3}=\frac{1}{3} m+\frac{8}{3}=-\frac{1}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
m=-\frac{7}{3} m=-3
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{8}{3} ಕಳೆಯಿರಿ.