ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
m ಪರಿಹರಿಸಿ
Tick mark Image

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

-m^{2}=-7-3
ಎರಡೂ ಕಡೆಗಳಿಂದ 3 ಕಳೆಯಿರಿ.
-m^{2}=-10
-10 ಪಡೆದುಕೊಳ್ಳಲು -7 ದಿಂದ 3 ಕಳೆಯಿರಿ.
m^{2}=\frac{-10}{-1}
-1 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
m^{2}=10
\frac{-10}{-1} ಭಿನ್ನಾಂಶವನ್ನು ಗಣಕ ಮತ್ತು ಛೇದದಿಂದ ಋಣಾತ್ಮಕ ಚಿಹ್ನೆಯನ್ನು ತೆಗೆದುಹಾಕುವ ಮೂಲಕ 10 ಗೆ ಸರಳೀಕರಿಸಬಹುದು.
m=\sqrt{10} m=-\sqrt{10}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
3-m^{2}+7=0
ಎರಡೂ ಬದಿಗಳಿಗೆ 7 ಸೇರಿಸಿ.
10-m^{2}=0
10 ಪಡೆದುಕೊಳ್ಳಲು 3 ಮತ್ತು 7 ಸೇರಿಸಿ.
-m^{2}+10=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳು, x^{2} ಪದದ ಜೊತೆಗೆ ಆದರೆ ಯಾವುದೇ x ಪದವಿಲ್ಲ, ಒಮ್ಮೆ ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿ ಅವುಗಳನ್ನು ಇರಿಸಿದರೆ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ವರ್ಗ ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು ಇನ್ನೂ ಪರಿಹರಿಸಬಹುದು: ax^{2}+bx+c=0.
m=\frac{0±\sqrt{0^{2}-4\left(-1\right)\times 10}}{2\left(-1\right)}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ -1, b ಗೆ 0 ಮತ್ತು c ಗೆ 10 ಬದಲಿಸಿ.
m=\frac{0±\sqrt{-4\left(-1\right)\times 10}}{2\left(-1\right)}
ವರ್ಗ 0.
m=\frac{0±\sqrt{4\times 10}}{2\left(-1\right)}
-1 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{0±\sqrt{40}}{2\left(-1\right)}
10 ಅನ್ನು 4 ಬಾರಿ ಗುಣಿಸಿ.
m=\frac{0±2\sqrt{10}}{2\left(-1\right)}
40 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
m=\frac{0±2\sqrt{10}}{-2}
-1 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
m=-\sqrt{10}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{0±2\sqrt{10}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
m=\sqrt{10}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ m=\frac{0±2\sqrt{10}}{-2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ.
m=-\sqrt{10} m=\sqrt{10}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.