x ಪರಿಹರಿಸಿ
x=\frac{4\sqrt{34}-28}{3}\approx -1.558730807
x=\frac{-4\sqrt{34}-28}{3}\approx -17.10793586
ಗ್ರಾಫ್
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3x^{2}+56x+80=0
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
x=\frac{-56±\sqrt{56^{2}-4\times 3\times 80}}{2\times 3}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 3, b ಗೆ 56 ಮತ್ತು c ಗೆ 80 ಬದಲಿಸಿ.
x=\frac{-56±\sqrt{3136-4\times 3\times 80}}{2\times 3}
ವರ್ಗ 56.
x=\frac{-56±\sqrt{3136-12\times 80}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-56±\sqrt{3136-960}}{2\times 3}
80 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-56±\sqrt{2176}}{2\times 3}
-960 ಗೆ 3136 ಸೇರಿಸಿ.
x=\frac{-56±8\sqrt{34}}{2\times 3}
2176 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{-56±8\sqrt{34}}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{8\sqrt{34}-56}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-56±8\sqrt{34}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 8\sqrt{34} ಗೆ -56 ಸೇರಿಸಿ.
x=\frac{4\sqrt{34}-28}{3}
6 ದಿಂದ -56+8\sqrt{34} ಭಾಗಿಸಿ.
x=\frac{-8\sqrt{34}-56}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-56±8\sqrt{34}}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -56 ದಿಂದ 8\sqrt{34} ಕಳೆಯಿರಿ.
x=\frac{-4\sqrt{34}-28}{3}
6 ದಿಂದ -56-8\sqrt{34} ಭಾಗಿಸಿ.
x=\frac{4\sqrt{34}-28}{3} x=\frac{-4\sqrt{34}-28}{3}
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
3x^{2}+56x+80=0
ಇದರಂತಹ ವರ್ಗೀಯ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಪೂರ್ಣಗೊಳಿಸುವ ಮೂಲಕ ಪರಿಹರಿಸಬಹುದು. ವರ್ಗವನ್ನು ಪೂರ್ಣಗೊಳಿಸಲು, ಸಮೀಕರಣವು ಮೊದಲು x^{2}+bx=c ಫಾರ್ಮ್ನಲ್ಲಿ ಇರಬೇಕು.
3x^{2}+56x+80-80=-80
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 80 ಕಳೆಯಿರಿ.
3x^{2}+56x=-80
80 ಅನ್ನು ಸ್ವತಃ ಅದರಿಂದಲೇ ಕಳೆಯುವುದರಿಂದ 0 ಸಿಗುತ್ತದೆ.
\frac{3x^{2}+56x}{3}=-\frac{80}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
x^{2}+\frac{56}{3}x=-\frac{80}{3}
3 ದಿಂದ ಭಾಗಿಸುವುದರಿಂದ 3 ಮೂಲಕ ಗುಣಾಕಾರವನ್ನು ರದ್ದುಗೊಳಿಸುತ್ತದೆ.
x^{2}+\frac{56}{3}x+\left(\frac{28}{3}\right)^{2}=-\frac{80}{3}+\left(\frac{28}{3}\right)^{2}
\frac{28}{3} ಪಡೆಯುವುದಕ್ಕಾಗಿ x ನ ಗುಣಾಂಕವಾದ \frac{56}{3} ಅನ್ನು 2 ನಿಂದ ವಿಭಾಗಿಸಿ. ನಂತರ ಸಮೀಕರಣದ ಎರಡೂ ಭಾಗಗಳಿಗೆ \frac{28}{3} ನ ವರ್ಗವನ್ನು ಸೇರಿಸಿ. ಈ ಹಂತವು ಸಮೀಕರಣದ ಎಡ ಭಾಗವನ್ನು ಪರಿಪೂರ್ಣ ವರ್ಗವನ್ನಾಗಿಸುತ್ತದೆ.
x^{2}+\frac{56}{3}x+\frac{784}{9}=-\frac{80}{3}+\frac{784}{9}
ಭಿನ್ನಾಂಶದ ಸಂಖ್ಯಾಕಾರ ಮತ್ತು ಛೇದವನ್ನು ಎರಡನ್ನೂ ವರ್ಗಗೊಳಿಸುವ ಮೂಲಕ \frac{28}{3} ವರ್ಗಗೊಳಿಸಿ.
x^{2}+\frac{56}{3}x+\frac{784}{9}=\frac{544}{9}
ಸಾಮಾನ್ಯ ಛೇದವನ್ನು ಹುಡುಕುವ ಮತ್ತು ಅಂಶಗಳನ್ನು ಸೇರಿಸುವ ಮೂಲಕ \frac{784}{9} ಗೆ -\frac{80}{3} ಸೇರಿಸಿ. ತದನಂತರ ಸಾಧ್ಯವಾದರೆ, ಅತಿ ಕಡಿಮೆ ಪದಗಳಿಗೆ ಭಿನ್ನಾಂಶವನ್ನು ಕಡಿಮೆ ಮಾಡಿ.
\left(x+\frac{28}{3}\right)^{2}=\frac{544}{9}
ಅಪವರ್ತನ x^{2}+\frac{56}{3}x+\frac{784}{9}. ಸಾಮಾನ್ಯವಾಗಿ, x^{2}+bx+c ಒಂದು ಪರಿಪೂರ್ಣ ಚೌಕವಾಗಿದ್ದಾಗ, ಅದನ್ನು ಯಾವಾಗಲೂ \left(x+\frac{b}{2}\right)^{2} ಆಗಿ ಅಪವರ್ತನಗೊಳಿಸಬಹುದು.
\sqrt{\left(x+\frac{28}{3}\right)^{2}}=\sqrt{\frac{544}{9}}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+\frac{28}{3}=\frac{4\sqrt{34}}{3} x+\frac{28}{3}=-\frac{4\sqrt{34}}{3}
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=\frac{4\sqrt{34}-28}{3} x=\frac{-4\sqrt{34}-28}{3}
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ \frac{28}{3} ಕಳೆಯಿರಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}