ಅಪವರ್ತನ
3\left(f-2\right)\left(f+7\right)
ಮೌಲ್ಯಮಾಪನ
3\left(f-2\right)\left(f+7\right)
ರಸಪ್ರಶ್ನೆ
Polynomial
3 { f }^{ 2 } +15f-42
ಹಂಚಿ
ಕ್ಲಿಪ್ಬೋರ್ಡ್ಗೆ ನಕಲಿಸಿ
3\left(f^{2}+5f-14\right)
3 ಅಪವರ್ತನಗೊಳಿಸಿ.
a+b=5 ab=1\left(-14\right)=-14
f^{2}+5f-14 ಪರಿಗಣಿಸಿ. ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಅಭಿವ್ಯಕ್ತಿಯನ್ನು f^{2}+af+bf-14 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,14 -2,7
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -14 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+14=13 -2+7=5
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-2 b=7
ಪರಿಹಾರವು 5 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(f^{2}-2f\right)+\left(7f-14\right)
\left(f^{2}-2f\right)+\left(7f-14\right) ನ ಹಾಗೆ f^{2}+5f-14 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
f\left(f-2\right)+7\left(f-2\right)
ಮೊದಲನೆಯದರಲ್ಲಿ f ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 7 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(f-2\right)\left(f+7\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ f-2 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
3\left(f-2\right)\left(f+7\right)
ಸಂಪೂರ್ಣ ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿಯನ್ನು ಮರುಬರೆಯಿರಿ.
3f^{2}+15f-42=0
ವರ್ಗೀಯ ಬಹುಪದೋಕ್ತಿಯನ್ನು ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ಪರಿವರ್ತನೆಯನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಬಹುದು, ಇಲ್ಲಿ x_{1} ಮತ್ತು x_{2} ಇವುಗಳು ವರ್ಗೀಯ ಸಮೀಕರಣ ax^{2}+bx+c=0 ದ ಪರಿಹಾರಗಳಾಗಿವೆ.
f=\frac{-15±\sqrt{15^{2}-4\times 3\left(-42\right)}}{2\times 3}
ax^{2}+bx+c=0 ಫಾರ್ಮ್ನ ಎಲ್ಲಾ ಸಮೀಕರಣಗಳನ್ನು ವರ್ಗ ಸೂತ್ರ ಬಳಸಿಕೊಂಡು ಪರಿಹರಿಸಬಹುದು: \frac{-b±\sqrt{b^{2}-4ac}}{2a}. ವರ್ಗ ಸೂತ್ರವು ಎರಡು ಪರಿಹಾರಗಳನ್ನು ನೀಡುತ್ತದೆ, ಒಂದು ± ಸಂಕಲನ ಮಾಡಿದಾಗ ಮತ್ತು ಇನ್ನೊಂದು ಇದನ್ನು ವ್ಯವಕಲನ ಮಾಡಿದಾಗ.
f=\frac{-15±\sqrt{225-4\times 3\left(-42\right)}}{2\times 3}
ವರ್ಗ 15.
f=\frac{-15±\sqrt{225-12\left(-42\right)}}{2\times 3}
3 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
f=\frac{-15±\sqrt{225+504}}{2\times 3}
-42 ಅನ್ನು -12 ಬಾರಿ ಗುಣಿಸಿ.
f=\frac{-15±\sqrt{729}}{2\times 3}
504 ಗೆ 225 ಸೇರಿಸಿ.
f=\frac{-15±27}{2\times 3}
729 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
f=\frac{-15±27}{6}
3 ಅನ್ನು 2 ಬಾರಿ ಗುಣಿಸಿ.
f=\frac{12}{6}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ f=\frac{-15±27}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 27 ಗೆ -15 ಸೇರಿಸಿ.
f=2
6 ದಿಂದ 12 ಭಾಗಿಸಿ.
f=-\frac{42}{6}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ f=\frac{-15±27}{6} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -15 ದಿಂದ 27 ಕಳೆಯಿರಿ.
f=-7
6 ದಿಂದ -42 ಭಾಗಿಸಿ.
3f^{2}+15f-42=3\left(f-2\right)\left(f-\left(-7\right)\right)
ax^{2}+bx+c=a\left(x-x_{1}\right)\left(x-x_{2}\right) ನ್ನು ಬಳಸಿಕೊಂಡು ಮೂಲ ಉಕ್ತಿಯನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. x_{1} ಗೆ ಬದಲಾಗಿ 2 ನ್ನು ಮತ್ತು x_{2} ಗೆ ಬದಲಾಗಿ -7 ನ್ನು ಬಳಸಿ.
3f^{2}+15f-42=3\left(f-2\right)\left(f+7\right)
p-\left(-q\right) ರೂಪದ ಎಲ್ಲಾ ಅಭಿವ್ಯಕ್ತಿಗಳನ್ನು p+q ಗೆ ಸರಳೀಕರಿಸಿ.
ಉದಾಹರಣೆಗಳು
ವರ್ಗ ಸಮೀಕರಣ
{ x } ^ { 2 } - 4 x - 5 = 0
ಟ್ರಿಗ್ನಾಮೆಟ್ರಿ
4 \sin \theta \cos \theta = 2 \sin \theta
ರೇಖಾ ಸಮೀಕರಣ
y = 3x + 4
ಅಂಕಗಣಿತ
699 * 533
ಮ್ಯಾಟ್ರಿಕ್ಸ್
\left[ \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right] \left[ \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right]
ಏಕಕಾಲಿಕ ಸಮೀಕರಣ
\left. \begin{cases} { 8x+2y = 46 } \\ { 7x+3y = 47 } \end{cases} \right.
ಡಿಫರೆನ್ಶಿಯೇಶನ್
\frac { d } { d x } \frac { ( 3 x ^ { 2 } - 2 ) } { ( x - 5 ) }
ಇಂಟಿಗ್ರೇಶನ್
\int _ { 0 } ^ { 1 } x e ^ { - x ^ { 2 } } d x
ಮಿತಿಗಳು
\lim _{x \rightarrow-3} \frac{x^{2}-9}{x^{2}+2 x-3}