ಮುಖ್ಯ ವಿಷಯಕ್ಕೆ ಬಿಟ್ಟುಬಿಡಿ
x ಪರಿಹರಿಸಿ
Tick mark Image
ಗ್ರಾಫ್‌

ವೆಬ್ ಶೋಧದಿಂದ ಅದೇ ತರಹದ ಸಮಸ್ಯೆಗಳು

ಹಂಚಿ

\left(x+1\right)^{2}=\frac{75}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\left(x+1\right)^{2}=25
25 ಪಡೆಯಲು 3 ರಿಂದ 75 ವಿಭಾಗಿಸಿ.
x^{2}+2x+1=25
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+2x+1-25=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ.
x^{2}+2x-24=0
-24 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 25 ಕಳೆಯಿರಿ.
a+b=2 ab=-24
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, x^{2}+\left(a+b\right)x+ab=\left(x+a\right)\left(x+b\right) ಸೂತ್ರವನ್ನು ಬಳಸಿಕೊಂಡು x^{2}+2x-24 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,24 -2,12 -3,8 -4,6
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -24 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-4 b=6
ಪರಿಹಾರವು 2 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x-4\right)\left(x+6\right)
ಪಡೆದುಕೊಂಡ ಮೌಲ್ಯಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಅಪವರ್ತನಗೊಳಿಸಿದ ಅಭಿವ್ಯಕ್ತಿ \left(x+a\right)\left(x+b\right) ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x=4 x=-6
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-4=0 ಮತ್ತು x+6=0 ಪರಿಹರಿಸಿ.
\left(x+1\right)^{2}=\frac{75}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\left(x+1\right)^{2}=25
25 ಪಡೆಯಲು 3 ರಿಂದ 75 ವಿಭಾಗಿಸಿ.
x^{2}+2x+1=25
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+2x+1-25=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ.
x^{2}+2x-24=0
-24 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 25 ಕಳೆಯಿರಿ.
a+b=2 ab=1\left(-24\right)=-24
ಸಮೀಕರಣವನ್ನು ಪರಿಹರಿಸಲು, ಗುಂಪುಗೊಳಿಸುವ ಮೂಲಕ ಎಡಭಾಗದಲ್ಲಿ ಅಪವರ್ತನಗೊಳಿಸಿ. ಮೊದಲು, ಎಡಭಾಗವನ್ನು x^{2}+ax+bx-24 ಎಂಬುದಾಗಿ ಮರುಬರೆಯಬೇಕಾಗುತ್ತದೆ. a ಮತ್ತು b ಹುಡುಕಲು, ಪರಿಹರಿಸಬೇಕಾದ ಸಿಸ್ಟಂ ಅನ್ನು ಹೊಂದಿಸಿ.
-1,24 -2,12 -3,8 -4,6
ab ಋಣಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, a ಮತ್ತು b ವಿರುದ್ಧ ಚಿಹ್ನೆಗಳನ್ನು ಹೊಂದಿವೆ. a+b ಧನಾತ್ಮಕ ಆಗಿರುವುದರಿಂದ, ಧನಾತ್ಮಕ ಸಂಖ್ಯೆಯು ಋಣಾತ್ಮಕ ಸಂಖ್ಯೆಗಿಂತ ಅಧಿಕ ಪ್ರಮಾಣದ ಪರಿಪೂರ್ಣ ಮೌಲ್ಯವನ್ನು ಹೊಂದಿದೆ. ಉತ್ಪನ್ನ -24 ನೀಡುವ ಎಲ್ಲ ಈ ರೀತಿಯ ಪೂರ್ಣಾಂಕ ಜೋಡಿಗಳನ್ನು ಪಟ್ಟಿ ಮಾಡಿ.
-1+24=23 -2+12=10 -3+8=5 -4+6=2
ಪ್ರತಿ ಜೋಡಿಗಾಗಿ ಮೊತ್ತವನ್ನು ಲೆಕ್ಕಾಚಾರ ಮಾಡಿ.
a=-4 b=6
ಪರಿಹಾರವು 2 ಮೊತ್ತವನ್ನು ನೀಡುವ ಜೋಡಿ ಆಗಿದೆ.
\left(x^{2}-4x\right)+\left(6x-24\right)
\left(x^{2}-4x\right)+\left(6x-24\right) ನ ಹಾಗೆ x^{2}+2x-24 ಅನ್ನು ಮರುಬರೆಯಿರಿ.
x\left(x-4\right)+6\left(x-4\right)
ಮೊದಲನೆಯದರಲ್ಲಿ x ಅನ್ನು ಮತ್ತು ಎರಡನೆಯ ಗುಂಪಿನಲ್ಲಿ 6 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
\left(x-4\right)\left(x+6\right)
ವಿತರಣೆಯ ಗುಣಲಕ್ಷಣಗಳನ್ನು ಬಳಸಿಕೊಂಡು ಸಾಮಾನ್ಯ ಪದ x-4 ಅನ್ನು ಅಪವರ್ತನಗೊಳಿಸಿ.
x=4 x=-6
ಸಮೀಕರಣ ಪರಿಹಾರಗಳನ್ನು ಹುಡುಕಲು, x-4=0 ಮತ್ತು x+6=0 ಪರಿಹರಿಸಿ.
\left(x+1\right)^{2}=\frac{75}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\left(x+1\right)^{2}=25
25 ಪಡೆಯಲು 3 ರಿಂದ 75 ವಿಭಾಗಿಸಿ.
x^{2}+2x+1=25
\left(x+1\right)^{2} ವಿಸ್ತರಿಸಲು ಬೈನಾಮಿಯಲ್ ಪ್ರಮೇಯ \left(a+b\right)^{2}=a^{2}+2ab+b^{2} ಬಳಸಿ.
x^{2}+2x+1-25=0
ಎರಡೂ ಕಡೆಗಳಿಂದ 25 ಕಳೆಯಿರಿ.
x^{2}+2x-24=0
-24 ಪಡೆದುಕೊಳ್ಳಲು 1 ದಿಂದ 25 ಕಳೆಯಿರಿ.
x=\frac{-2±\sqrt{2^{2}-4\left(-24\right)}}{2}
ಈ ಸಮೀಕರಣವು ಪ್ರಮಾಣಿತ ಫಾರ್ಮ್‌ನಲ್ಲಿದೆ: ax^{2}+bx+c=0. ವರ್ಗ ಸೂತ್ರ \frac{-b±\sqrt{b^{2}-4ac}}{2a} ನಲ್ಲಿ a ಗೆ 1, b ಗೆ 2 ಮತ್ತು c ಗೆ -24 ಬದಲಿಸಿ.
x=\frac{-2±\sqrt{4-4\left(-24\right)}}{2}
ವರ್ಗ 2.
x=\frac{-2±\sqrt{4+96}}{2}
-24 ಅನ್ನು -4 ಬಾರಿ ಗುಣಿಸಿ.
x=\frac{-2±\sqrt{100}}{2}
96 ಗೆ 4 ಸೇರಿಸಿ.
x=\frac{-2±10}{2}
100 ನ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x=\frac{8}{2}
± ಎನ್ನುವುದು ಧನಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-2±10}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. 10 ಗೆ -2 ಸೇರಿಸಿ.
x=4
2 ದಿಂದ 8 ಭಾಗಿಸಿ.
x=-\frac{12}{2}
± ಎನ್ನುವುದು ಋಣಾತ್ಮಕವಾಗಿರುವಾಗ x=\frac{-2±10}{2} ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಿ. -2 ದಿಂದ 10 ಕಳೆಯಿರಿ.
x=-6
2 ದಿಂದ -12 ಭಾಗಿಸಿ.
x=4 x=-6
ಸಮೀಕರಣವನ್ನು ಇದೀಗ ಪರಿಹರಿಸಲಾಗಿದೆ.
\left(x+1\right)^{2}=\frac{75}{3}
3 ದಿಂದ ಎರಡೂ ಕಡೆಗಳಲ್ಲಿ ಭಾಗಿಸಿ.
\left(x+1\right)^{2}=25
25 ಪಡೆಯಲು 3 ರಿಂದ 75 ವಿಭಾಗಿಸಿ.
\sqrt{\left(x+1\right)^{2}}=\sqrt{25}
ಸಮೀಕರಣದ ಎರಡು ಬದಿಗಳ ವರ್ಗಮೂಲವನ್ನು ತೆಗೆದುಕೊಳ್ಳಿ.
x+1=5 x+1=-5
ಸರಳೀಕೃತಗೊಳಿಸಿ.
x=4 x=-6
ಸಮೀಕರಣದ ಎರಡೂ ಕಡೆಗಳಿಂದ 1 ಕಳೆಯಿರಿ.